首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report new fluorescence excitation and single vibronic level emission spectra of the A (1)A(")<-->X (1)A(') system of CHCl. A total of 21 cold bands involving the pure bending levels 2(0) (n) with n=1-7 and combination bands 2(0) (n)3(0) (1)(n=4-7), 2(0) (n)3(0) (2)(n=4-6), 1(0) (1)2(0) (n)(n=5-7), 1(0) (1)2(0) (n)3(0) (1)(n=4-6), and 1(0) (1)2(0) (n)3(0) (2)(n=4) were observed in the 450-750 nm region; around half of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis typically yielded band origins and rotational constants for both isotopomers (CH(35)Cl,CH(37)Cl). The derived A (1)A(") vibrational intervals are combined with results of Chang and Sears to determine the excited state barrier to linearity [V(b)=1920(50) cm(-1)]. The A (1)A(") state C-H stretching frequency is determined here for the first time, in excellent agreement with ab initio predictions. Following our observation of new bands in this system, we obtained the single vibronic level (SVL) emission spectra which probe the vibrational structure of the X (1)A(') state up to approximately 9000 cm(-1) above the vibrationless level. The total number of X (1)A(') levels observed is around three times than that previously reported, and we observe five new a (3)A(") state levels, including all three fundamentals. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with the previous experimental and recent high level ab initio studies, are reported. Our data confirm the previous assignment of the a (3)A(") origin, and our value for T(00)(a-X)=2172(2) cm(-1) is in excellent agreement with theory. By exploiting SVL spectra from excited state levels with K(a) (')=1, we determine the effective rotational constant (A-B) of the triplet origin, also in good agreement with theory. Our results shed new light on the vibrational structure of the X (1)A('), A (1)A("), and a (3)A(") states of CHCl, and, more generally, spin-orbit coupling in the monohalocarbenes.  相似文献   

2.
We report fluorescence excitation and emission spectra of CHBr in the 450-750 nm region. A total of 30 cold bands involving the pure bending levels 2(0)(n) with n=2-8 and combination bands 2(0)(n)3(0)(1)(n=1-8), 2(0) (n)3(0)(2)(n=1-6), 2(0)(n)3(0)(3)(n=1-2), 1(0)(1)2(0)(n)(n=5-7), 1(0)(1)2(0)(n)3(0)(1)(n=4-6), and 1(0)(1)2(0)(n)3(0)(2)(n=5) in the A (1)A(")<--X (1)A(') system were observed, in addition to a number of hot bands. The majority of these are reported and/or rotationally analyzed here for the first time. Spectra were measured under jet-cooled conditions using a pulsed discharge source, and rotational analysis yielded band origins and rotational constants for both bromine isotopomers (CH (79)Br,CH (81)Br). The derived A (1)A(") vibrational intervals are combined with results of [Yu et al. J. Chem. Phys. 115, 5433 (2001)] to derive barriers to linearity for the 2(n), 2(n)3(1), and 2(n)3(2) progressions. The A (1)A(") state C-H stretching frequency is determined here for the first time, and the observed nu(3) dependence of the (79)Br-(81)Br isotope splitting in the A(1)A(") state is in good agreement with theoretical expectations. Our dispersed fluorescence spectra probe the vibrational structure of the X(1)A(') state up to approximately 9000 cm(-1) above the vibrationless level; the total number of levels observed is more than twice that previously reported. As first reported by [Chen et al. J. Mol. Spectrosc. 209, 254 (2001)], these spectra reveal numerous perturbations due to spin-orbit interaction with the low-lying a(3)A(") state. The results of a Dunham expansion fit of the ground state vibrational term energies, and comparisons with previous experimental and theoretical studies, are reported. Our results lead to several revised assignments, including the X (1)A(') C-H stretching fundamental. Globally, the vibrational frequencies of X(1)A('), a(3)A("), and A(1)A(") are in excellent agreement with theoretical predictions.  相似文献   

3.
We report the first observation of the predissociative B state of a halocarbene molecule. Rovibronic energy levels were measured in the B(1A') state of CHF by fluorescence dip detected optical-optical double resonance spectroscopy via the A state. The origin was found to lie 30 817.4 cm-1 above the zero point level of the X state. Rotational transitions within six purely bending states, and states involving one or two quanta of CF-stretch were observed, including the vibrational angular momentum components. Interpretation of the spectrum, with support of ab initio calculations, shows that CHF is quasilinear in the B state with a small (-200 cm-1) barrier to linearity which lies below the zero-point level. The rotational constant, B=1.04 to 1.09 cm-1, depending on vibrational state, again in good agreement with theory. All observed B state levels were predissociative, as evidenced by Lorentzian line broadening. Linewidths varied with initial state from 0.7-10.8 cm-1, corresponding to excited state lifetimes of 0.5-8 ps.  相似文献   

4.
We report fluorescence excitation and single vibronic level emission spectra of jet-cooled CDBr in the 450-750 nm region. A total of 32 cold bands involving the pure bending levels 2(0)n with n=3-10 and combination bands 2(0)n3(0)1 (n=2-10), 2(0)n3(0)2 (n=2-9), 1(0)(1)2(0)n (n=7-10), and 1(0)(1)2(0)n3(0)(1) (n=6,8-9) in the A1A" <-- X1A' system of this carbene were observed; most of these are reported and/or rotationally analyzed here for the first time. Rotational analysis yielded band origins and effective (B) rotational constants for both bromine isotopomers (CD79Br and CD81Br). The derived A1A" vibrational intervals are combined with results of Yu et al. [J. Chem. Phys. 115, 5433 (2001)] to derive barriers to linearity for the 2n, 2n3(1), and 2n3(2) progressions. The A1A" state C-D stretching frequency (2350 cm(-1)) is determined for the first time, in excellent agreement with theory, as are the 79Br-81Br isotope splittings in the excited state. Our emission spectra probe the vibrational structure of the X1A' and a3A" states up to approximately 9000 cm(-1) above the vibrationless level of the X1A' state; the total number of levels observed is around twice that previously reported. Unlike CHBr, where even the lowest bending levels are perturbed by spin-orbit interaction with the triplet origin, the term energy of every level save one below 3000 cm(-1) in CDBr is reproduced by a Dunham expansion to within a standard deviation of 1 cm(-1), and a spin-orbit coupling matrix element of approximately 330 cm(-1) is derived from a deperturbation analysis of the triplet origin. The multireference configuration interaction (MRCI) calculations of Yu et al. [J. Chem. Phys. 115, 5433 (2001)] well reproduce triplet perturbations in the pure bending manifold, and globally, the vibrational frequencies of X1A', a3A", and A1A" are in excellent agreement with theoretical predictions.  相似文献   

5.
We report studies aimed at unraveling the complicated structure of the CCl 2 A (1)B 1 <-- X (1)A 1 system. We have remeasured the fluorescence excitation spectrum from approximately 17,500 to 24,000 cm (-1) and report the term energies and A rotational constants of many new bands for both major isotopologues (C (35)Cl 2, C (35)Cl (37)Cl). We fit the observed term energies to a polyad effective Hamiltonian model and demonstrate that a single resonance term accounts for much of the observed mixing, which begins approximately 1300 cm (-1) above the vibrationless level of the A (1)B 1 state. The derived A (1)B 1 vibrational parameters are in excellent agreement with ab initio predictions, and the mixing coefficients deduced from the polyad model fit are in close agreement with those derived from direct fits of single vibronic level (SVL) emission intensities. The approach to linearity and thus the Renner-Teller (RT) intersection is probed through the energy dependence of the A rotational constant and fluorescence lifetime measurements, which indicate a barrier height above the vibrationless level of the X (1)A 1 state of approximately 23,000-23,500 cm (-1), in excellent agreement with ab initio theory.  相似文献   

6.
7.
Single vibronic level dispersed fluorescence spectra of jet-cooled HGeCl and DGeCl have been recorded by laser excitation of selected bands of the A 1A"-X 1A' electronic transition. Twenty-six ground state vibrational levels of HGeCl and 42 of DGeCl were measured, assigned, and fitted to standard anharmonicity expressions, which allowed all the harmonic frequencies to be determined for both isotopomers. A normal coordinate least squares analysis obtained by fitting the harmonic frequencies yielded reliable values for five of the six force constants. The ground state effective rotational constants and force field data were combined to calculate average (rz) and approximate equilibrium (re z) structures, with re z(GeH)=1.586(1) A, re z(GeCl)=2.171(2) A, and the bond angle fixed at our CCSD(T)/aug-cc-pVTZ ab initio value of 93.9 degrees . Comparisons show that the derived bond lengths are consistent with those of the appropriate diatomic molecules in their ground electronic states and the bond angle is similar to that of germylene (GeH2). A Franck-Condon simulation of the vibrational intensities in the 0(0) (0) band emission spectrum of HGeCl using ab initio force field data shows good agreement with experiment, lending credence to the vibrational analysis of the observed spectra.  相似文献   

8.
We recorded dispersed fluorescence (DF) spectra following excitation of the pure bending levels 2(0) (n) and the combination states 1(0) (1)2(0) (n) and 2(0) (n)3(0) (1) in the A 1A"<--X 1A' system of HCF and DCF. Spectra were measured with a 0.3 m spectrograph equipped with a gated intensified charge coupled device (CCD) detector and obtained under jet-cooled conditions using a pulsed discharge source. The DF spectra reveal rich detail concerning the vibrational structure of the X state up to 10 000 cm(-1). For HCF, resonances among the nearly degenerate levels 1(1)2n, 2n+13(1), and 2n+2 produce a polyadlike structure in the spectrum, and the usual effective spectroscopic Hamiltonian (Dunham expansion) poorly reproduces the experimental term energies. In contrast, this Hamiltonian works well for the term energies of DCF. Density functional calculations of the ground state vibrational frequencies were performed; the results are in excellent agreement with the experimentally derived vibrational parameters. The search for perturbations involving the low-lying a 3A" state is described.  相似文献   

9.
Electronic and vibrational structures in the S(0) (1)A(1) and S(1) (1)A(1) states of jet-cooled phenanthrene-h(10) and phenanthrene-d(10) were analyzed by high-resolution spectroscopy using a tunable nanosecond pulsed laser. The normal vibrational energies and molecular structures were estimated by ab initio calculations with geometry optimization in order to carry out a normal-mode analysis of observed vibronic bands. The rotational structure was analyzed by ultrahigh-resolution spectroscopy using a continuous-wave single-mode laser. It has been demonstrated that the stable geometrical structure is markedly changed upon the S(1) ← S(0) electronic excitation. Nonradiative internal conversion in the S(1) state is expected to be enhanced by this structural change. The observed fluorescence lifetime has been found to be much shorter than the calculated radiative lifetime, indicating that the fluorescence quantum yield is low. The lifetime of phenanthrene-d(10) is longer than that of phenanthrene-h(10) (normal deuterium effect). This fact is in contrast with anthracene, which is a structural isomer of phenanthrene. The lifetime at the S(1) zero-vibrational level of anthracene-d(10) is much shorter than that of anthracene-h(10) (inverse deuterium effect). In phenanthrene, the lifetime becomes monotonically shorter as the vibrational energy increases for both isotopical molecules without marked vibrational dependence. The vibrational structure of the S(0) state is considered to be homogeneous and quasi-continuous (statistical limit) in the S(1) energy region.  相似文献   

10.
Fluorescence excitation spectra and wavelength-resolved emission spectra of the C(3)-Kr and C(3)-Xe van der Waals (vdW) complexes have been recorded near the 2(2-)(0), 2(2+)(0), 2(4-)(0), and 1(1)(0) bands of the A?(1)Π(u)-X?(1)Σ(g)(+) system of the C(3) molecule. In the excitation spectra, the spectral features of the two complexes are red-shifted relative to those of free C(3) by 21.9-38.2 and 34.3-36.1 cm(-1), respectively. The emission spectra from the A? state of the Kr complex consist of progressions in the two C(3)-bending vibrations (ν(2), ν(4)), the vdW stretching (ν(3)), and bending vibrations (ν(6)), suggesting that the equilibrium geometry in the X? state is nonlinear. As in the Ar complex [Zhang et al., J. Chem. Phys. 120, 3189 (2004)], the C(3)-bending vibrational levels of the Kr complex shift progressively to lower energy with respect to those of free C(3) as the bending quantum number increases. Their vibrational structures could be modeled as perturbed harmonic oscillators, with the dipole-induced dipole terms of the Ar and Kr complexes scaled roughly by the polarizabilities of the Ar and Kr atoms. Emission spectra of the Xe complex, excited near the A?, 2(2-) level of free C(3), consist only of progressions in even quanta of the C(3)-bending and vdW modes, implying that the geometry in the higher vibrational levels (υ(bend) ≥ 4, E(vib) ≥ 328 cm(-1)) of the X? state is (vibrationally averaged) linear. In this structure the Xe atom bonds to one of the terminal carbons nearly along the inertial a-axis of bent C(3). Our ab initio calculations of the Xe complex at the level of CCSD(T)∕aug-cc-pVTZ (C) and aug-cc-pVTZ-PP (Xe) predict that its equilibrium geometry is T-shaped (as in the Ar and Kr complexes), and also support the assignment of a stable linear isomer when the amplitude of the C(3) bending vibration is large (υ(4) ≥ 4).  相似文献   

11.
The laser-induced fluorescence (LIF) spectra, both the fluorescence excitation spectra (FES) and single vibrational level fluorescence spectra (SVLF) from several different vibronic states, along with the ultraviolet (UV) absorption spectra of 1,4-benzodioxan have been recorded and analyzed. A detailed energy map has been constructed for four low-frequency vibrations and their combinations for both the S(0) and S(1)(pi,pi) electronic states. These are nu(48) (ring-bending), nu(25) (ring-twisting), nu(47) (ring-flapping), and nu(24) (skeletal-twisting). Both the experimental and ab initio calculations show the molecule to be twisted in both the S(0) and S(1)(pi,pi) states with high barriers to planarity. The experimentally determined ring-twisting quantum states, which are confined to the lower regions of the potential energy surface, were used to calculate one-dimensional potential functions in terms of the twisting coordinates, and the extrapolated barriers were estimated to be 5700 and 4200 cm(-1) for the S(0) and S(1) states, respectively. Two-dimensional calculations, which included the interactions with the bending modes, gave values of 3906 and 1744 cm(-1), respectively. The S(0) value compares favorably with the ab initio value of 4095 cm(-1).  相似文献   

12.
The Renner-Teller effect in C(2)H(2)(+)(X(2)Pi(u)) has been studied by using zero kinetic energy (ZEKE) photoelectron spectroscopy and coherent extreme ultraviolet (XUV) radiation. The rotationally resolved vibronic spectra have been recorded for energies up to 2000 cm(-1) above the ground vibrational state. The C triple bond C symmetric stretching (upsilon(2)), the CCH trans bending (upsilon(4)), and the CCH cis bending (upsilon(5)) vibrational excitations have been observed. The assigned vibronic bands are 4(1)(1)(kappa(2)Sigma(u)(+))(hot band), 4(1)(0)(mu/kappa(2)Sigma (u)(-/+)), 5(1)(0)(mu/kappa(2)Sigma (g)(+/-)), and 4(2)(0)(mu(2)Pi(u)), 4(2)(0)(kappa(2)Pi(u)), 4(1)(0)5(1)(0) (mu(2)Pi(g)), 0(0)(0)(X(2)Pi(u)), and 2(1)(0)(X(2)Pi(u)). The Renner-Teller parameters, the harmonic frequencies, the spin-orbit coupling constants, and the rotational constants for the corresponding vibronic bands have been determined by fitting the spectra with energy eigenvalues from the Hamiltonian that considers simultaneously Renner-Teller coupling, vibrational energies, rotational energies, and spin-orbit coupling interaction.  相似文献   

13.
The A1A" state of isocyanogen, CNCN, is observed using photofragment fluorescence excitation spectroscopy in a room temperature cell and in a molecular beam. The spectra are highly congested, but progressions that correspond to the Franck-Condon active C-N-C bending vibration in the excited state are evident. Linewidth measurements indicate that the excited state lifetime is <10 ps. These measurements are consistent with previous ab initio calculations, which predicted a bent excited state with a short lifetime due to predissociation. Although we do not believe that we have observed the origin band of the electronic transition, we place an upper limit of 42,523 cm(-1) on the energy of the excited state zero point level.  相似文献   

14.
The A?(1)A(')-X?(1)A(') electronic spectrum of the jet-cooled transient molecule HAsO and its deuterated isotopologue has been observed for the first time by pulsed discharge jet laser spectroscopy. The techniques of laser-induced fluorescence and single vibronic level emission were employed to probe the electronic properties of the species. The bending and AsO stretching frequencies have been determined in both states. A rotational analysis of the 0(0)(0) bands of both HAsO and DAsO has been completed and the following effective (r(0)) structures were derived: r(")(HAs) = 1.576(3) ?, r(")(AsO) = 1.8342(5) ?, and θ(") = 101.5(4)°; and r(')(HAs) = 1.569(4) ?, r(')(AsO) = 1.7509(9) ?, and θ(') = 93.1(10)°. In the rotational analysis, lines induced by axis-tilting were observed, and calculated spectra with an axis tilting angle of 3.0(5)° reproduced the intensity of these lines. The change in geometry on electronic excitation is similar to that observed for the molecule HPO, with an increase in the X-O bond length and a decrease in the HXO angle, but contrary to the predictions of the Walsh diagram for generic HAB triatomic molecules. Our ab initio calculations show that the correlation between orbital energy and bond angle changes upon electronic excitation, resulting in the atypical angle change.  相似文献   

15.
The T1(n,pi*) <-- S0 transition of 2-cyclopenten-1-one (2CP) was investigated by using phosphorescence excitation (PE) spectroscopy in a free-jet expansion. The origin band, near 385 nm, is the most intense feature in the T1(n,pi*) <-- S0 PE spectrum. A short progression in the ring-bending mode (nu'(30)) is also observed. The effective vibrational temperature in the jet is estimated at 50 K. The spectral simplification arising from jet cooling helps confirm assignments made previously in the room-temperature cavity ringdown (CRD) absorption spectrum, which is congested by vibrational hot bands. In addition to the origin and nu'(30) assignments, the jet-cooled PE spectrum also confirms the 28(0)(1) (C=O out-of-plane wag), 29(0)(1) (C=C twist), and 19(0)(1) (C=O in-plane wag) band assignments that were made in the T1(n,pi*) <-- S0 room-temperature CRD spectrum. The temporal decay of the T1 state of 2CP was investigated as a function of vibronic excitation. Phosphorescence from the v' = 0 level persists the entire time the molecules traverse the emission detection zone. Thus the phosphorescence lifetime of the v' = 0 level is significantly longer than the 2 micros transit time through the viewing zone. Higher vibrational levels in the T1 state have shorter phosphorescence lifetimes, on the order of 2 micros or less. The concomitant reduction in emission quantum yield causes the higher vibronic bands (above 200 cm(-1)) in the PE spectrum to be weak. It is proposed that intersystem crossing to highly vibrationally excited levels of the ground state is responsible for the faster decay and diminished quantum yield. The jet cooling affords partial rotational resolution in the T1(n,pi*) <-- S0 spectrum of 2CP. The rotational structure of the origin band was simulated by using inertial constants available from a previously reported density functional (DFT) calculation of the T1(n,pi*) state, along with spin constants obtained via a fitting procedure. Intensity parameters were also systematically varied. The optimized intensity factors support a model that identifies the S2(pi,pi*) <-- S0 transition in 2CP as the sole source of oscillator strength for the T1(n,pi*) <-- S0 transition.  相似文献   

16.
Single vibronic level dispersed fluorescence spectra of jet-cooled HGeBr, DGeBr, HGeI, and DGeI have been obtained by laser excitation of selected bands of the A (1)A(")-X (1)A(') electronic transition. The measured ground state vibrational intervals were assigned and fitted to anharmonicity expressions, which allowed the harmonic frequencies to be determined for both isotopomers. In some cases, lack of a suitable range of emission data necessitated that some of the anharmonicity constants and vibrational frequencies be estimated from those of HGeClDGeCl and the corresponding silylenes (HSiX). Harmonic force fields were obtained for both molecules, although only four of the six force constants could be determined. The ground state effective rotational constants and force field data were combined to calculate average (r(z)) and approximate equilibrium (r(e) (z)) structures. For HGeBr r(e) (z)(GeH)=1.593(9) A, r(e) (z)(GeBr)=2.325(21) A, and the bond angle was fixed at our CCSD(T)/aug-cc-pVTZ ab initio value of 93.6 degrees . For HGeI we obtained r(e) (z)(GeH)=1.589(1) A, r(e) (z)(GeI)=2.525(5) A, and bond angle=93.2 degrees . Franck-Condon simulations of the emission spectra using ab initio Cartesian displacement coordinates reproduce the observed intensity distributions satisfactorily. The trends in structural parameters in the halogermylenes and halosilylenes can be readily understood based on the electronegativity of the halogen substituent.  相似文献   

17.
A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).  相似文献   

18.
A systematic analysis of the S(1)-trans (A?(1)A(u)) state of acetylene, using IR-UV double resonance along with one-photon fluorescence excitation spectra, has allowed assignment of at least part of every single vibrational state or polyad up to a vibrational energy of 4200 cm(-1). Four observed vibrational levels remain unassigned, for which no place can be found in the level structure of the trans-well. The most prominent of these lies at 46?175 cm(-1). Its (13)C isotope shift, exceptionally long radiative lifetime, unexpected rotational selection rules, and lack of significant Zeeman effect, combined with the fact that no other singlet electronic states are expected at this energy, indicate that it is a vibrational level of the S(1)-cis isomer (A?(1)A(2)). Guided by ab initio calculations [J. H. Baraban, A. R. Beck, A. H. Steeves, J. F. Stanton, and R. W. Field, J. Chem. Phys. 134, 244311 (2011)] of the cis-well vibrational frequencies, the vibrational assignments of these four levels can be established from their vibrational symmetries together with the (13)C isotope shift of the 46?175 cm(-1) level (assigned here as cis-3(1)6(1)). The S(1)-cis zero-point level is deduced to lie near 44?900 cm(-1), and the ν(6) vibrational frequency of the S(1)-cis well is found to be roughly 565 cm(-1); these values are in remarkably good agreement with the results of recent ab initio calculations. The 46?175 cm(-1) vibrational level is found to have a 3.9 cm(-1) staggering of its K-rotational structure as a result of quantum mechanical tunneling through the isomerization barrier. Such tunneling does not give rise to ammonia-type inversion doubling, because the cis and trans isomers are not equivalent; instead the odd-K rotational levels of a given vibrational level are systematically shifted relative to the even-K rotational levels, leading to a staggering of the K-structure. These various observations represent the first definite assignment of an isomer of acetylene that was previously thought to be unobservable, as well as the first high resolution spectroscopic results describing cis-trans isomerization.  相似文献   

19.
The structural properties of phenylacetylene have been investigated in the S(0)((1)A(1)) neutral ground and S(1)((1)B(2)) and S(2)((1)A(1)) singlet excited states and the D(0)((2)B(1)) cationic state using both rovibronic and multidimensional Franck-Condon simulations from data determined via correlated ab initio methods. Results are compared to experimental and ab initio data reported in the literature. (10,10)-CASSCF and a hybrid CASSCF/SACCI frequency analysis using the cc-pVDZ Dunning basis set have been employed to produce vibronic simulations of REMPI/FES, dispersed fluorescence, TPES and MATI spectra. Calculated rotational constants are used where appropriate to compare to rotationally resolved experimental studies. Whilst the simulations are of generally good quality, it is apparent that the distortion of the ring along the long axis upon electronic excitation is underestimated, resulting in smaller predicted changes in ipso and para CCC bond angles and weaker activities in the 6a and 9a modes compared with experiment. Simulations of one-photon MATI spectra on the other hand, which do not rely on excited state methodologies, compare very well with experiment, suggesting that the neutral and cationic ground state geometries are quite accurate, as are the predicted changes in geometry accompanying ionisation. Simulated rotational and vibrational profiles, as well as other calculated physical data, show good agreement with the numerous experimental and computational studies of phenylacetylene in the literature.  相似文献   

20.
We have recorded stimulated emission pumping (SEP) spectra of the A1A' ' 1A' system of CHF, which reveal rich detail concerning the rovibronic structure of the 1A' state up to approximately 7000 cm-1 above the vibrationless level. Using several intermediate A1A' ' state levels, we obtained rotationally resolved spectra for 16 of the 33 levels observed in our previous single vibronic level (SVL) emission study (Fan et al., J. Chem. Phys. 2005, 123, 014314), in addition to one new level. An anharmonic effective Hamiltonian model poorly reproduces the term energies even with the improved set of data because of the extensive interactions among levels in a given polyad (p) having combinations of nu1, nu2, nu3, which satisfy the relationship p = 2nu1 + nu2 + nu3. However, the precise A rotational constants determined from the SEP data were invaluable in clarifying the assignments for these strongly perturbed levels, and the data are well reproduced using a multiresonance effective Hamiltonian model. The derived vibrational parameters are in good agreement with high level ab initio calculations. The experimental frequencies were combined with those of CDF to derive a harmonic force field and average (rz,r(z)e) structures for the ground state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号