首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Drop-shape analysis was used to study the binding of streptavidin to biotin at the interface between water and a pendant chloroform droplet. Polyethylene oxide molecules were synthesized with a hydrophobic tail at one end of the molecule and a hydroxyl or biotin group at the other end. The interfacial tension of the water/chloroform interface was measured before and after addition of these amphiphiles to the chloroform phase and before and after addition of streptavidin to the aqueous phase. The hydroxyl-terminated amphiphiles eliminate nonspecific adsorption of the streptavidin to the interface, while streptavidin binds irreversibly to the biotin-terminated molecules. Molecular interactions within this bound layer were studied by measuring changes in the interfacial pressure as the layer is contracted and expanded by changing the volume of the chloroform droplet. A picture of the interfacial structure was obtained from quantitative comparisons between the experimental results and a molecular theory of protein binding to tethered ligands. These comparisons suggest that protein binding is controlled by the extension of the PEO tethers away from the interface.  相似文献   

2.
The spontaneous formation of a thread-like pattern with negatively charged lipids on an oil/water interface is reported. An analysis of the time-dependent change at the interface observed by fluorescence microscopy revealed that the thread-like pattern is generated through a two-step mechanism. First, inverted lipid micelles in the bulk-oil phase gradually diffuse onto the oil/water interface. Next, the micelles are adsorbed on the interface and self-assemble to form the thread-like pattern. The essential characteristics of this pattern formation are theoretically reproduced by a simple Monte Carlo simulation that takes into account the kinetics in the coalescence of charged micelles on a 2D interface.  相似文献   

3.
Spreading of partially crystallized oil droplets on an air/water interface   总被引:3,自引:0,他引:3  
The influence of crystalline fat on the amount and rate of oil spreading out of emulsion droplets onto either a clean or a protein-covered air/water interface was measured for β-lactoglobulin stabilized emulsions prepared with either anhydrous milk fat or a blend of hydrogenated palm fat and sunflower oil. At a clean interface, liquid oil present in the emulsion droplets was observed to completely spread out of the droplets unimpeded by the presence of a fat crystal network. Further, the presence of a fat crystal network in the emulsion droplets had no effect on the rate of oil spreading out of the droplets. At a protein-covered interface, the spreading behavior of emulsion droplets containing crystalline fat was evaluated in terms of the value of the surface pressure (ΠAW) at the point of spreading; ΠAW at spreading was unaffected by the presence of crystalline fat. We conclude it is unlikely that the role of crystalline fat in stabilizing aerated emulsions such as whipped cream is to reduce oil spreading at the air/water interface. However, the temperature of the system did have an effect: spontaneous spreading of emulsion droplets at clean air/water interfaces occurred for systems measured at 5 °C, but not for those measured at 22 or 37 °C. Thus, temperature may play a more important role in the whipping process than commonly thought: the entering and spreading of emulsion droplets was favored at lower temperatures because the surface pressure exerted by protein adsorbed at the air/water interface was reduced. This effect may facilitate the whipping process.  相似文献   

4.
Irregular electrical potential oscillations and interfacial tension were observed in an oil/water system consisting of nitrobenzene and an aqueous solution of 5 vol% butanol. When phospholipid, dipalmitoylphosphatidylethanolamine (DPPE), was added to the aqueous phase in this system, rhythmic oscillations were generated. The molecular mechanism for the oscillations has been interpreted with the aid of computer simulation based on a set of nonlinear differential rate-equations.  相似文献   

5.
两种喹啉类药物在水/硝基苯界面循环伏安研究   总被引:1,自引:0,他引:1  
本文用循环伏安法研究了盐酸喹啉和8-羟基喹啉配合质子在水/硝基苯界面的转移过程, 讨论了水相pH值对其转移行为的影响, 探讨了有关转移过程的机理, 测定并计算了有关热力学参数。  相似文献   

6.
The electrical interaction between two long, parallel cylinders each is covered by an ion-penetrable charged membrane immersed in an oil/water interface is investigated. The effects of contact angle, radius of cylinder, and membrane thickness on the electrical interaction force are examined. The results of numerical simulation reveal that the following conditions lead to a greater electrical interaction force: (i) a larger contact angle, i.e. a larger fraction of a cylinder in the oil phase; (ii) a larger cylinder radius; and (iii) a thinner membrane. For a fixed ionic strength, the electrical interaction force is insensible to the type of electrolytes in the water phase, in general. However, if two cylinders are close enough, then the higher the valence of counterions the greater the electrical interaction force.  相似文献   

7.
We studied the evolution of oil-in-oil (O/O) and water-in-oil (W/O) phospholipid-coated micro-droplets at an oil/water interface. We found that, in both cases, micro-droplets spontaneously transferred from the oil phase to the water phase. O/O micro-droplets transformed into oil-in-water micro-droplets, while W/O micro-droplets led to the formation of liposomes.  相似文献   

8.
Interfacial tension measurements have been performed at the water/hexane interface on mixtures of the bovine milk protein β-lactoglobulin and positively charged cationic surfactants (alkytrimethylammonium bromides). The addition of surfactants with different chain lengths leads to the formation of protein-surfactant complexes with different adsorption properties as compared to those of the single protein. In this study, the formation of complexes has been observed clearly for protein-long chain surfactant (TTAB and CTAB) mixtures, which has shown in addition to specific electrostatic interactions the relevance of hydrophobic interactions between surfactant molecules and the protein. The modeling of interfacial tension data by using a mixed adsorption model provides a quantitative understanding of the mixture behavior. Indeed, the value of the adsorption constant of the protein obtained in the presence of surfactants has strongly varied as compared to the single protein. Actually, this parameter which represents the affinity of the molecule for the interface is representative of the hydrophobic character of the compound and so of its surface activity. Even if a more hydrophobic and more surface active protein-surfactant complex has been formed, the replacement of this complex from the interface by surfactants close to their cmc was observed.  相似文献   

9.
Fats are widely present in a large variety of food and represent the main source of energy for the body. In the current study we investigate the behaviour of fatty acids at liquid–liquid interfaces, mimicking some steps of the very complex digestion process. Octanoic acid is used as an example of middle chain fatty acids. For the oil phase we choose sunflower oil as an industrial product and hexane as pure oil.The influence of the fatty acid concentration and the pH of the aqueous phase on the interfacial tension is determined by profile analyse tensiometry (PAT), which allows to examine the way of adsorption and transition of the fatty acids from one phase to the other. Predominantly, the pH affects the dissociation and thereby the strength of the hydrophilic character of the fatty acid. The adsorption behaviour indicates the different interfacial activity of the studied octanoic acid.  相似文献   

10.
Photocyanation of pyrene (PyH) across an oil/water interface was explored by using two types of polymer microchannel chip. The chips (channel depth of 20 microm and width of 100 microm) were fabricated on the basis of photolithography and an imprinting method, with micromachined silicon templates being used for imprinting. As a typical example of the photoreaction, an aqueous NaCN solution and a propylene carbonate solution of PyH and 1,4-dicyanobenzene were brought separately into a Y-structured microchannel chip with the same flow velocity by pressure driven flow. Light irradiation onto the whole of the channel chip by a high-pressure Hg lamp resulted in formation of 1-cyanopyrene (PyCN), as confirmed by GC-MS analysis of the oil phase. The results demonstrated that the interfacial photochemical reaction of PyH proceeded successfully along the water/oil solution flow in the microchannel. Under optimum conditions by using a three-layer channel chip, absolute PyCN yields as high as 73% were attained with a reaction time of 210 s.  相似文献   

11.
Adsorption kinetics of some carotenoids at the oil/water interface   总被引:2,自引:0,他引:2  
The kinetic analysis of the adsorption of two carotenoids (i.e., ethyl ester of β-apo-8′-carotenoic acid and β-carotene, all trans-isomers) from n-hexane solutions at the oil/water interface is presented for several carotenoid concentrations in the oil phase. A new kinetic approach is developed and it addresses the diffusion adsorption associated with a reversible interfacial reaction, which describes the reorientation of surfactant molecules between two conformations. This approach leads to a general analytical expression that contains four physical parameters and describes with high accuracy the experimental dynamic interfacial tensions for the two carotenoids, which independently adsorb from n-hexane phase to the n-hexane/water interface. The calculations give the characteristic times for the carotenoid adsorption at the oil/water interface in terms of diffusion relaxation and kinetic relaxation times. The results explain the long time effects on the adsorption of these carotenoids at the oil/water interface. The data are in substantial agreement with the molecular structure of these carotenoids and with the earlier data recorded for cholesterol adsorption at the n-heptane/water interface. Based on these findings, we propose a molecular mechanism for the interfacial transformation of carotenoid molecules at a hydrophobic/hydrophilic interface.  相似文献   

12.
We consider two identical, parallel, infinitely long solid cylinders at a given separation, lying flat on a plane oil/water interface and both immersed to the same extent in the oil and water phases. The part of the surface of each cylinder in contact with the aqueous phase is charged, forming an electric double layer in a symmetrical aqueous binary electrolyte. The electrical potential in the overlapping electric double layers in the aqueous phase satisfies the Poisson-Boltzmann equation. The potentials within the uncharged interiors of the solid cylinders and in the oil phase satisfy Laplace's equation. The equations for the three potentials are solved simultaneously using the finite element method with Galerkin weighted residuals. The double-layer interaction per unit length of the cylinders is then calculated. Of the numerical results obtained, three deserve special mention. First, a short-range double-layer repulsion, decaying exponentially with separation between the two cylinders, acts through the aqueous electrolyte medium, whereas in the case of an uncharged oil/water interface a weaker, but much longer-ranging, repulsive interaction acts through the oil medium. Second, reasonable estimates of the short-range interaction between cylinders in a planar interface can be obtained from the Derjaguin approximation for thin double layers. Third, in addition to the repulsive force between the cylinders parallel to the oil/water interface, a force normal to the interface acts on the cylinders in the direction of the aqueous electrolyte phase.  相似文献   

13.
Study of the dynamic interfacial tension at the oil/water interface   总被引:1,自引:0,他引:1  
A review is given on three recently developed methods to measure the dynamic interfacial tension at the oil/water interface. These are respectively the dynamic drop volume method, the dynamic capillary method, and the (reversed) funnel method. For each method presented the basic principles are described and a few experimental results are given.Paper presented at the 7th International Conference on Surface Active Substances (Bad-Stuer, DDR, 25–30. April 1988).  相似文献   

14.
Our electrochemical cell consisted of a ferrocene-included hemispherical nitrobenzene (NB) droplet on the glassy carbon (GC) electrode which was immersed in the aqueous solution including sodium sulfate and sodium dodecyl sulfate (SDS). When an air bubble was injected near the boundary between the oil and the aqueous phase, it stayed at the top of the hemisphere on the boundary so that the lower half of the bubble was put in oil and the other half was in water. From the force balance of surface tension and buoyancy of the bubble, the bubble took an energetic minimum at the interface. It sank into the oil phase when ferrocene in the oil was electrochemically oxidized through the GC electrode by the three-phase boundary reaction. The electrochemical reduction caused the bubble to move back toward the aqueous phase. The motion of the bubble was synchronized with the redox reaction of ferrocene. The potential step oxidation showed such a rapid response that the motion could not be attributed to diffusion of ferricenium ion from the three-phase boundary to the bubble. Our idea of explaining the rapidity was the translational motion of the SDS layer along the boundary, which was driven by the difference in the surface concentration of SDS caused by the electrochemical generation of the ferricenium ion. The motion of the SDS layer was demonstrated by the shrinkage of the oil layer spread on the water surface when SDS solution was dropped on the oil layer. The spreading velocity was close to the velocity of propagating the oxidation of ferrocene to the bubble.  相似文献   

15.
《Tetrahedron: Asymmetry》2005,16(23):3785-3794
Stereoselective syntheses of non-proteinogenic di- 14a,b, 15a,b and 16a,b and tripeptides 14c, 15c and 16c containing an l-valine unit and a cyclic unnatural α-amino acid have been accomplished starting from the l-valine derived chiral synthon 1. The conformational preferences of these unnatural peptides were investigated by 1H NMR and IR spectroscopies and by molecular modelling calculations. X-ray analysis of pseudopeptides 15a and 15b is also reported.  相似文献   

16.
17.
18.
The spectrofluorometric behavior of a membrane potential-sensitive dye, 1-(3-sulfonatopropyl)-4-[β-{2-(di-N-butylamino)-6-naphthyl}vinyl]pyridinium betaine (di-4-ANEPPS), at the polarized 1,2-dichloroethane/water interface was studied by means of potential-modulated fluorescence (PMF) spectroscopy. The results, combined with those from cyclic and alternating current voltammetry, clearly suggested that the dye adsorbed at the interface underwent a reorientation with increasing the interfacial potential, giving a well-developed PMF response as well as a voltammetric response. In addition to the PMF response, another PMF response was observed by addition of dilauroyl phosphatidylcholine (DLPC). This additional response was well explained in terms of a reorientation of di-4-ANEPPS at the interface, which would be induced by the potential-dependent desorption of DLPC from the interface. Thus, the present study supported the reorientation/solvatochromic mechanism for the membrane potential-sensitive dye rather than the electrochromic mechanism.  相似文献   

19.
Drop and bubble shape tensiometry experiments are performed at the water/air and water/hexane interfaces in order to get more information about the differences in the adsorption layer structure of mixed protein/surfactant systems. For mixtures of β-lactoglobulin and sodium dodecyl sulphate the adsorption at the water/air interface is essentially a competitive process between protein/surfactant complexes and free surfactant molecules, while the water/oil interface is essentially covered by the complexes.  相似文献   

20.
The adsorption kinetics of some local anesthetics, like dibucaine and tetracaine, and of stearic acid from bulk solutions at the oil/water interface was studied by using the pendent drop and ring methods. The anesthetics were dissolved in aqueous solutions (pH 2), and the fatty acid was dissolved in benzene, each biocompound at several different concentrations in bulk solutions. Kinetic equations for Langmuir mechanism of adsorption at oil/water interface were tested. The kinetic analysis shows that Langmuir kinetic approach describes the dynamic interfacial pressures within the limits of the experimental errors over a wide range of time and for different surfactant concentrations in bulk solutions. It is also concluded that this approach allows the calculation of the ratio of the adsorption and desorption rate constants of these biocompounds at the oil/water interface. Obtained results are in substantial agreement with earlier reported data for the surfactant adsorption as, well as with their molecular structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号