首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
李玫瑰  李元星  毛丽秋 《色谱》2007,25(1):35-38
将一种新型、简单、快速、环境友好的萃取方法微滴液相微萃取(SDME)与气相色谱-质谱法结合用于快速分析食品中的几种酞酸酯(PAEs)。考察了萃取溶剂的种类及用量、微液滴在样品溶液中的深度、萃取时间及搅拌子的搅拌速度对微滴液相微萃取的影响。优化的萃取条件为:萃取溶剂为2.0 μL甲苯,微液滴在样品溶液中的深度为0.75 cm,搅拌速度为1000 r/min,萃取时间为20 min。该方法的线性范围为0.1~4000 μg/L,检测限为25 ng/L~0.8 mg/L,加标回收率为87.1%~114.4%,相对标准偏差为4.9%~11.6%。微滴液相微萃取所需的有机溶剂量很小,是一种快速、简单、安全、有效的水溶性样品的前处理方法。  相似文献   

2.
This paper describes the development of a new method using single-drop microextraction (SDME) and RP-HPLC for the determination of decabromodiphenyl ether (BDE-209) in water samples. The effects of SDME parameters such as extraction solvent, microdrop volume, extraction time, stirring speed, salt concentration, and sample pH on the extraction performance are investigated. Under optimal extraction conditions (extraction solvent, toluene; solvent drop volume, 3.0 microL; extraction time, 15 min; stirring speed, 600 rpm; no addition of salt and change of sample pH), the calibration curve was drawn by plotting peak area against a series of BDE-209 concentrations (0.001-1 microg/mL) in aqueous solution; the correlation coefficient (r) was 0.9998. The limit of detection was 0.7 ng/mL. The enrichment factor was 10.6. The precision of this method was obtained by six successive analyses of a 100 ng/mL standard solution of BDE-209, and RSD was 4.8%. This method was successfully applied to the extraction of BDE-209 from tap and East Lake water samples with relative recoveries ranging from 92.5 to 102.8% and from 91.5 to 96.2%, respectively, and the relative standard deviations (n = 3) were 4.4 and 2.2%. The proposed method is acceptable for the analysis of BDE-209 in water samples.  相似文献   

3.
In this work, for the first time, gas chromatography-mass spectrometry (GC-MS) following headspace single-drop microextraction (HS-SDME) and simultaneous derivatization was developed for fast determination of short-chain aliphatic amines (SCAAs) in water samples. In the proposed method, SCAAs in water samples were headspace extracted and concentrated by suspending a microdrop of solvent, and SCAAs extracted in the microdrop of solvent were simultaneously and rapidly reacted with pentafluorobenzaldehyde (PFBAY). The formed SCAA derivatives were analyzed by GC-MS. The HS-SDME parameters of solvent selection, solvent volume, sample temperature, extraction time and stirring rate were studied, and the method linearity, precision and detection limits, were also studied. The results show that the proposed method provided good linearity (R(2)>0.99, 5.0-500 ng/ml), low detection limit (0.6-1.1 ng/ml), and good precision (RSD value less than 10%). The proposed method was further tested by its application to quantitative analysis of SCAAs in four wastewater samples. The experiment results have demonstrated that GC-MS following HS-SDME and simultaneous derivatization is a simple, rapid and low-cost method for the determination of SCAAs in water samples.  相似文献   

4.
Headspace solvent microextraction (HSME) was shown to be an efficient preconcentration method for extraction of some polycyclic aromatic hydrocarbons (PAHs) from aqueous sample solutions. A microdrop of 1-butanol (as extracting solvent) containing biphenyl (as internal standard) was used in this investigation. Extraction occurred by suspending a 3 μl drop of 1-butanol from the tip of a microsyringe fixed above the surface of solution in a sealed vial. After extraction for a preset time, the microdrop was retracted back into the syringe and injected directly into a GC injection port. The effects of nature of extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, ionic strength and extraction time on HSME efficiency were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by water samples spiked with PAHs. The optimized procedure was successfully applied to the extraction and determination of PAHs in different water samples.  相似文献   

5.
《Analytical letters》2012,45(8):1544-1557
Geosmin (GSM) and 2-methylisoborneol (MIB) were extracted from water samples, adsorbed in organic solvent microdrop by headspace liquid-phase microextraction (HS-LPME), and were analyzed by gas chromatography-mass spectrometry (GC-MS). Influence factors such as the extraction solvent types, headspace and microdrop volumes, stirring rate, equilibrium and extraction time, and ionic strength for HS-LPME efficiency were thoroughly evaluated. Under optimized extraction and detection conditions, the calibration curves of GSM and MIB were linear in the range of 5–1000 ng/L. The detection limits of GSM and MIB were 1.1 and 1.0 ng/L, respectively. Average recoveries of 95.45–113.7% (n = 5) were obtained and method precisions were also satisfactory. Trace levels of the off-flavor compounds at ng/L in tap water and raw water were successfully quantified.  相似文献   

6.
建立了单滴液相微萃取(SDME)与气相色谱-质谱(GC-MS)联用技术快速检测水中的硝基咪唑类药物,对影响萃取的因素(溶剂的种类及用量、萃取时间、萃取温度及搅拌子的搅拌速度)进行优化。优化的萃取条件为:溶剂为2.5μL正辛醇,温度为50℃,搅拌速度为600 r/min,时间为20 min。萃取后,微液滴转移至衍生化试管,于70℃水浴中衍生45 min,进样分析。该方法在水中的线性范围为0.5~400μg/L,线性相关系数良好(r0.998),检测限为0.16~0.57μg/L。加标自来水和湖水中的相对平均回收率为80.9%~103.6%,相对标准偏差为1.7%~9.0%。  相似文献   

7.
An optimized method for the determination of five synthetic polycyclic: celestolide (ADBI), phantolide (AHMI), traseolide (ATII), galaxolide (HHCB), tonalide (AHTN), and two nitro‐aromatic musks: musk xylene (MX) and musk ketone (MK), in water samples is described. The method involves a dispersive micro solid‐phase extraction (D‐μ‐SPE) plus ultrasound‐assisted solvent desorption (UASD) prior to their determination by gas chromatography‐mass spectrometry (GC‐MS) using the selected ion storage (SIS) mode. Factors affecting the extraction efficiency of the target analytes from water samples and ultrasound‐assisted solvent desorption were optimized by a Box‐Behnken design method. The optimal extraction conditions involved immersing 10.1 mg of a typical octadecyl (C18) bonded silica adsorbent (i.e., ENVI‐18) in a 50 mL water sample. After 10.4 min of extraction by vigorously shaking, the adsorbent was collected and dried on a filter, and the target musks were desorbed by ultrasound‐assisted for 38 sec with n‐hexane (200 μL) as the desorption solvent. A 10 μL aliquot was then directly determined by large‐volume injection GC‐MS. The limits of quantitation (LOQs) were 1.2 to 5 ng/L. The precision for these analytes, as indicated by relative standard deviations (RSDs), were less than 11% for both intra‐ and inter‐day analysis. Accuracy, expressed as the mean extraction recovery, was between 74% and 92%. A preliminary analysis of the effluents from municipal wastewater treatment plants (MWTP) and river water samples revealed that HHCB and AHTN were the two most commonly detected synthetic musks; their concentration were determined to range from 88 to 690 ng/L for effluent samples, and 5 to 320 ng/L for river water samples. This is a simple, low cost, effective, and eco‐friendly analytical method.  相似文献   

8.
Khajeh M  Yamini Y  Hassan J 《Talanta》2006,69(5):1088-1094
In the present work, a rapid method for the extraction and determination of chlorobenzenes (CBs) such as monochlorobenzene, 1,2-dichlorobenzene, 1,3-dichlorobenzene, 1,4-dichlorobenzene, 1,2,3-trichlorobenzene and 1,2,4-trichlorobenzene in water samples using the headspace solvent microextraction (HSME) and gas chromatography/electron capture detector (ECD) has been described. A microdrop of the dodecane containing monobromobenzene (internal standard) was used as extracting solvent in this investigation. The analytes were extracted by suspending a 2.5 μl extraction drop directly from the tip of a microsyringe fixed above an extraction vial with a septum in a way that the needle passed through the septum and the needle tip appeared above the surface of the solution. After the extraction was finished, the drop was retracted back into the needle and injected directly into a GC column. Optimization of experimental conditions such as nature of the extracting solvent, microdrop and sample temperatures, stirring rate, microdrop and sample volumes, the ionic strength and extraction time were investigated. The optimized conditions were as follows: dodecane as the extracting solvent, the extraction temperature, 45 °C; the sodium chloride concentration, 2 M; the extraction time, 5.0 min; the stirring rate, 500 rpm; the drop volume, 2.5 μl; the sample volume, 7 ml; the microsyringe needle temperature, 0.0 °C. The limit of detection (LOD) ranged from 0.1 μg/l (for 1,3-dichlorobenzene) to 3.0 μg/l (for 1,4-dichlorobenzene) and linear range of 0.5–3.0 μg/l for 1,2-dichlorobenzene, 1,3-dichlorobenzene and from 5.0 to 20.0 μg/l for monochlorobenzene and from 5.0 to 30 μg/l for 1,4-dichlorobenzene. The relative standard deviations (R.S.D.) for most of CBs at the 5 μg/l level were below 10%. The optimized procedure was successfully applied to the extraction and determination of CBs in different water samples.  相似文献   

9.
Solid-phase extraction combined with dispersive liquid-liquid microextraction (SPE-DLLME) was applied for the extraction of six organophosphorous pesticides (OPPs) in water samples. The analytes considered in this study were determined by gas chromatography with mass spectrometry and included prophos, diazinon, chlorpyrifos methyl, methyl parathion, fenchlorphos and chlorpyrifos. Several extraction conditions (extraction solvent and elution/dispersion solvents nature, extraction solvent volume, elution solvent volume, water volume and sample volume) were tested for SPE-DLLME with these analytes and the best results were obtained using carbon tetrachloride as the extraction solvent and acetone as the elution/dispersion solvent. Calibration curves for the determination of OPPs in water samples were constructed in the concentration range of 10-100 ng/L. Limits of detection (LODs) ranged from 38 to 230 pg/L values that are below the maximum admissible level for drinking water (100 ng/L). Relative standard deviations (RSD) were between 8.6 and 10.4% for a fortification level of 100 ng/L. At the same fortification level, the relative recoveries (R.R.) of tap, well and irrigation water samples were in the range of 30.2-97.1%.  相似文献   

10.
A method was developed for viable and rapid determination of seven polychlorinated biphenyls (PCBs) in water samples with vortex-assisted liquid-liquid microextraction (VALLME) using gas chromatography-mass spectrometry (GC-MS). At first, the most suitable extraction solvent and extraction solvent volume were determined. Later, the parameters affecting the extraction efficiency such as vortex extraction time, rotational speed of the vortex, and ionic strength of the sample were optimized by using a 2(3) factorial experimental design. The optimized extraction conditions for 5 mL water sample were as follows: extractant solvent 200 μL of chloroform; vortex extraction time of 2 min at 3000 rpm; centrifugation 5 min at 4000 rpm, and no ionic strength. Under the optimum condition, limits of detection (LOD) ranged from 0.36 to 0.73 ng/L. Mean recoveries of PCBs from fortified water samples are 96% for three different fortification levels and RSDs of the recoveries are below 5%. The developed procedure was successfully applied to the determination of PCBs in real water and wastewater samples such as tap, well, surface, bottled waters, and municipal, treated municipal, and industrial wastewaters. The performance of the proposed method was compared with traditional liquid-liquid extraction (LLE) of real water samples and the results show that efficiency of proposed method is comparable to the LLE. However, the proposed method offers several advantages, i.e. reducing sample requirement for measurement of target compounds, less solvent consumption, and reducing the costs associated with solvent purchase and waste disposal. It is also viable, rapid, and easy to use for the analyses of PCBs in water samples by using GC-MS.  相似文献   

11.
Zheng C  Zhao J  Bao P  Gao J  He J 《Journal of chromatography. A》2011,1218(25):3830-3836
A novel, simple and efficient dispersive liquid-liquid microextraction based on solidification of floating organic droplet (DLLME-SFO) technique coupled with high-performance liquid chromatography with ultraviolet detection (HPLC-UV) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed for the determination of triclosan and its degradation product 2,4-dichlorophenol in real water samples. The extraction solvent used in this work is of low density, low volatility, low toxicity and proper melting point around room temperature. The extractant droplets can be collected easily by solidifying it at a lower temperature. Parameters that affect the extraction efficiency, including type and volume of extraction solvent and dispersive solvent, salt effect, pH and extraction time, were investigated and optimized in a 5 mL sample system by HPLC-UV. Under the optimum conditions (extraction solvent: 12 μL of 1-dodecanol; dispersive solvent: 300 of μL acetonitrile; sample pH: 6.0; extraction time: 1 min), the limits of detection (LODs) of the pretreatment method combined with LC-MS/MS were in the range of 0.002-0.02 μg L(-1) which are lower than or comparable with other reported approaches applied to the determination of the same compounds. Wide linearities, good precisions and satisfactory relative recoveries were also obtained. The proposed technique was successfully applied to determine triclosan and 2,4-dichlorophenol in real water samples.  相似文献   

12.
A new method was developed for determination of methomyl in water samples by combining a dispersive liquid-liquid microextraction (DLLME) technique with HPLC-variable wavelength detection (VWD). In this extraction method, 0.50 mL of methanol (as dispersive solvent) containing 20.0 microL of tetrachloroethane (as extraction solvent) was rapidly injected by syringe into a 5.00-mL water sample containing the analyte, thereby forming a cloudy solution. After phase separation by centrifugation for 2 min at 4000 rpm, the enriched analyte in the settled phase (8 +/- 0.2 microL) was at the bottom of the conical test tube. A 5.0-microL volume of the settled phase was analyzed by HPLC-VWD. Parameters such as the nature and volume of the extraction solvent and the dispersive solvent, extraction time, and the salt concentration were optimized. Under the optimum conditions, the enrichment factor could reach 70.7 for a 5.00-mL water sample and the linear range, detection limit (S/N = 3), and precision (RSD, n = 6) were 3-5000 ng/mL, 1.0 ng/mL, and 2.6%, respectively. River and lake water samples were successfully analyzed by the proposed method. Comparison of this method with solid-phase extraction, solid-phase microextraction, and single-drop microextraction, indicates that DLLME combined with HPLC-VWD is a simple, fast, and low-cost method for the determination of methomyl, and thus has tremendous potential in trace analysis of methomyl in natural waters.  相似文献   

13.
A new procedure and experimental setup for the headspace solvent microextraction of volatile organic materials from aqueous sample solutions is described. The extraction occurs by suspending a 3-μl drop of the solvent from the tip of a microsyringe to the headspace of a stirred aqueous sample solution for a preset extraction time. The temperature of the microdrop and the bulk of sample solution should be kept constant at optimized values. The sample analyses were carried out by gas chromatography. The procedure was successfully applied to the extraction and determination of 2-butoxyethanol from content of some color samples used for painting the outer coverage of some machines such as coolers, refrigerator, cloths machine, etc. Parameters such as extraction time, nature of extraction solvent, size of microdrop, sample volume, stirring rate, ionic strength and pH of sample solution were studied and optimized, and the method performance was evaluated.  相似文献   

14.
《Analytical letters》2012,45(13):1875-1884
A headspace liquid phase microextraction (HS-LPME) method has been developed and optimized for the residual solvent determination in pharmaceutical products. A microdrop of n-hexanol containing isopropanol (as internal standard) was suspended at the tip of a gas chromatographic syringe and exposed to the headspace of the sample solution. After extraction for an optimized time, the microdrop was retracted into the syringe and injected directly into a GC injection port. Critical experimental factors, including extraction solvent, temperature, ionic strength, stirring rate, extraction time, equilibrium time, drop volume, and sample volume were investigated and optimized. Compared with the static headspace technique, HS-LPME method showed superior results, being compatible with the pharmaceutical samples.  相似文献   

15.
An immersed solvent microextraction (SME) method was successfully developed for the trace enrichment of aryloxyphenoxypropionate herbicides from aquatic media. A microdrop of toluene was used as the extraction solvent. Some important extraction parameters such as type of solvent, solvent dropsize, stirring rate, ionic strength and extraction time were investigated and optimized. The microdrop volume of 1.5?µL, a sampling time of 25?min, and use of toluene were major parameters for achieving high enrichment factors. The linearity was studied by preconcentration of 4?mL of the water samples spiked with a standard solution of aryloxyphenoxypropionates at the concentration range of 0.15 to 30?ng?mL?1. The coefficient of determination was satisfactory (r 2?>?0.99) for all the studied analyte and the relative standard deviations (RSD%) values under the optimized condition were found to be 1.7 to 14.2% at the concentrations of 1 and 10?ng?mL?1. The enrichment factors were from 217 to 403 for the samples spiked at 1?ng?mL?1. Detection limits were obtained to be in the range of 0.05 to 0.15?ng?mL?1 using time-scheduled selected ion monitoring (SIM). The EI mass spectra of these herbicides revealed that fenoxaprop-P-ethyl and quizalofop-P-ethyl exhibited [M-COOC2H5]+ as the base peak while, clodinafop-propargyl, haloxyfop-etotyl and haloxyfop-P-methyl showed [M-C2H4COOC3H3]+, [M-CH2COOC4H8O]+ and [M-COOCH3]+ as the base peaks, respectively. The developed method was successfully applied to the extraction and determination of aryloxyphenoxypropionates in river water samples.  相似文献   

16.
In this article, a new method using single-drop microextraction (SDME) and gas chromatography micro-electron capture detection (GC-μECD) for the determination of chloroacetanilide herbicides (alachlor, acetochlor, metolachlor, pretilachlor and butachlor) residues was developed. The effects of SDME parameters such as extraction solvent, stirring rate, ionic strength, microdrop volume and extraction time were optimized. The optimum experimental conditions found were: 1.6 μl toluene microdrop, 5 ml water sample, 400 rpm stirring rate, 15 min extraction time and no salt addition. Analytical parameters such as linearity, repeatability and limit of detection were also evaluated. The proposed method was proved to be a simple and rapid analytical procedure for chloroacetanilide herbicides in water with limits of detection 0.0002–0.114 μg/l. The relative recoveries range from 80% to 102% for all the target analytes, with the relative standard deviations varying from 3.9% to 11.7%.  相似文献   

17.
张文慧  姜廷福  吕志华  王远红 《色谱》2013,31(7):656-660
建立了基于离子液体的单滴微萃取-毛细管电泳联用测定溴酚类化合物的方法。考察了萃取剂种类与体积、萃取时间、有机溶剂、盐浓度及萃取温度对萃取效率的影响。确定了最佳萃取条件为:以1-丁基-3-甲基咪唑六氟磷酸盐([C4MIM]PF6])离子液体作为萃取剂,萃取时间为8 min,样品溶液中NaCl浓度为10%(质量分数),萃取温度为20 ℃。在最佳条件下,3种溴酚(4-溴酚、2,6-二溴酚和2,4,6-三溴酚)在1~100 mg/L范围内呈良好的线性关系,线性相关系数为0.9939~0.9988;检出限为0.3 mg/L (S/N=3);该方法对3种溴酚的富集倍数分别为115.8、327.0和569.8; 6次平行测定的相对标准偏差为5.21%~6.47%;对本地区自来水、河水和湖水的加标回收率为87.8%~96.7%。结果表明,该方法稳定可靠,适合于水体中溴酚类污染物的测定。  相似文献   

18.
The purpose of the present work is to develop a simple, rapid, sensitive and accurate method for the derivatization and subsequently preconcentration of Hg(II) and the determination of its derivative, diphenylmercury, in natural water samples using gas chromatography-flame ionization detection. The method is based on the diphenylation using phenyl boronic acid, subsequent extraction of phenylmercury into a single drop of an organic solvent (toluene), followed by gas chromatography-flame ionization detection GC-FID analysis of the extract. The pH of the feed solution was kept in pH 5 with acetate buffer solution. Thus, the optimized conditions are: organic solvent, toluene; derivatization time, 10 min; extraction time, 15 min; microdrop volume, 1.6 μL; stirring rate, 600 rpm; sample volume, 5 mL. The limit of detection (LOD), calculated on the basis of five replicates was 0.02 μg mL?1. The relative standard deviation of the method (RSD%, n = 5) was 3.0. Linear range was between 0.05 and 5 μg mL?1 and preconcentration factor obtained for phenyl-mercury was 105.  相似文献   

19.
A new technique, headspace single-drop microextraction (HS-SDME) with in-drop derivatization, was developed. Its feasibility was demonstrated by analysis of the model compounds, aldehydes in water. A hanging microliter drop of solvent containing the derivatization agent of O-2,3,4,5,6-(pentaflurobenzyl)hydroxylamine hydrochloride (PFBHA) was shown to be an excellent extraction, concentration, and derivatization medium for headspace analysis of aldehydes by GC-MS. Using the microdrop solvent with PFBHA, acetaldehyde, propanal, butanal, hexanal, and heptanal in water were headspace extracted and simultaneously derivatized. The formed oximes in the microdrop were analyzed by GC-MS. HS-SDME and in-drop derivatization parameters (extraction solvent, extraction temperature, extraction time, stirring rate microdrop volume, and the headspace volume) and the method validations (linearity, precision, detection limit, and recovery) were studied. Compared to liquid-liquid extraction and solid-phase microextraction, HS-SDME with in-drop derivatization is a simple, rapid, convenient, and inexpensive sample technique.  相似文献   

20.
The possibility of applying headspace solvent microextraction (HSME) for determination of mononitrotoluenes (MNTs) in waste water samples is demonstrated. A drop of n-amyl alcohol containing naphthalene as an internal standard was suspended from the tip of a microsyringe needle over the headspace of stirred sample solutions for a predescribed extraction period. The drop was then injected directly into a gas chromatograph. Optimization of experimental parameters such as the nature of extracting solvent, microdrop and sample volumes, sampling temperature, stirring rate, ionic strength of the solution, pH and extraction time on HSME efficiency were investigated. Then enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by water samples spiked with MNTs. Finally, the method was successfully applied to the extraction and determination of the mononitrotoluenes in waste waters of both P.C.I. Company and Research Center of Azad University.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号