首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We study diffusion of (fluorescently) tagged hard-core interacting particles of finite size in a finite one-dimensional system. We find an exact analytical expression for the tagged particle probability density function using a Bethe ansatz, from which the mean square displacement is calculated. The analysis shows the existence of three regimes of drastically different behavior for short, intermediate, and large times. The results are in excellent agreement with stochastic simulations (Gillespie algorithm).  相似文献   

2.
3.
We study the diffusive behavior of colloidal particles which are confined to one-dimensional channels generated by scanning optical tweezers. At long times t, the mean-square displacement is found to scale as t(1/2), which is expected for systems where single-file diffusion occurs. In addition, we experimentally obtain the long-time, self-diffusive behavior from the short-time collective density fluctuations of the system as suggested by a recent analytical approach [Phys. Rev. Lett. 90, 180602 (2003)].  相似文献   

4.
We present a general derivation of the non-Fickian behavior for the self-diffusion of identically interacting particle systems with excluded mutual passage. We show that the conditional probability distribution of finding a particle at position x(t) after time t, when the particle was located at x(0) at t=0, follows a Gaussian distribution in the long-time limit, with variance 2W(t) approximately t(1/2) for overdamped systems and with variance 2W(t) approximately t for classical systems. The asymptotic behavior of the mean-squared displacement, W(t), is shown to be independent of the nature of interactions for homogeneous systems in the fluid state. Moreover, the long-time behavior of self-diffusion is determined by short-time and large-scale collective density fluctuations.  相似文献   

5.
Driven diffusion of a Brownian particle along a one-dimensional lattice is investigated numerically on decreasing its damping constant. The notions of multiple jumps, jump reversal, and backward-to-forward rates are discussed in detail. In particular, we conclude that in the underdamped limit backward jumps are suppressed relative to forward jumps more effectively than previously assumed. The dependence of such a drive-controlled mechanism on the damping constant and the temperature is interpreted analytically.  相似文献   

6.
7.
Amal K. Das 《Physica A》1979,98(3):528-544
This paper deals with two equations for classical stochastic diffusion in a potential. First, the full Fokker-Planck equation in phase-space for a Brownian particle in a periodic potential and linearly coupled to an external field is considered. The solution discussed previously by the author and co-worker is improved upon. An alternative approximation is introduced. Then, the simpler Smoluchowski equation, which is derivable from the Fokker-Planck equation under suitable conditions, is solved using Hill's determinant method. Finally a WKB-type method is proposed to solve the Smoluchowski equation for a general class of potentials.  相似文献   

8.
It is known that the wetting behaviour of a fluid is deeply altered by the presence of rough or structured substrates. We first review some simple considerations about isotropic fluids and rough substrates, and then we generalize Wenzel's law, which assigns an effective contact angle to a droplet on a rough substrate, when the wetting layer has an ordered phase, like a nematic. We estimate the conditions for which the wetting behavior of an ordered fluid can be qualitatively different from that usually found in a simple fluid. To support our general considerations, we use the Landau-de Gennes mean field approach to investigate theoretically and numerically the wetting transition of a nematic phase on a periodic triangular structured substrate.  相似文献   

9.
We study the diffusion of a quantum heavy particle moving in a one dimensional strongly corrugated periodic potential, and interacting with a phonon bath.By integrating out the phonons degrees of freedom we derive an effective action functional for the particle, which includes a non-local self-interacting term whose strength is proved to be the classical friction coefficient .Using an instanton approach we express the velocity-velocity correlation function, and thus the mobility, of the brownian particle in terms of the charge density-density correlation function of a classical Coulomb gas, which in the strong corrugation limit has a very low fugacity.By making a virial expansion in the gas fugacity we evaluate the static mobility of the brownian particle as a function of the temperature, and we find two different behaviours: a diffusive behaviour at low friction, where decreases withT, and a localised behaviour at high friction, where increases withT.The cross-over between the two régimes takes place at a critical friction 0, corresponding to the Kosterlitz-Thouless transition for the Coulomb gas.  相似文献   

10.
An atomic cluster moving along a solid surface can undergo dissipation of its translational energy through a direct mode, involving the coupling of the center-of-mass motion to thermal excitations of the substrate, and an indirect mode, due to damping of the internal motion of the cluster, to which the center-of-mass motion can be coupled as a result of surface potential. Focussing only on the less well understood indirect mode, on the basis of numerical solutions, we present, departures from a recently reported simple relationship between the force and velocity of nonlinear friction. A generalization of the analytic considerations that earlier led to that relationship is carried out and shown to explain the departures satisfactorily. Our generalization treats for the system considered (dimer sliding over a periodic substrate) the complete dependence on several of the key parameters, specifically internal dissipation, natural frequency, substrate corrugation, and length ratio. Further predictions from our generalizations are found to agree with new simulations. The system analyzed is relevant to nanostructures moving over crystal surfaces.  相似文献   

11.
12.
13.
14.
We study, by Langevin simulations, the depinning dynamics of two-dimensional magnetized colloids on a substrate with periodic pinning centers. When the number ratios of pinnings to colloids are 1:1 matching and at finite temperature, we find for the first time crossovers from plastic flow through elastic smectic flow to elastic crystal flow near the depinning with increasing the pinning strength. There exists a power-law scaling relationship between the average velocity of colloids and the external driving force for all the three types of flows. It is found that the critical driving force and the power-law scaling exponent as well as the average intensity of Bragg peaks are invariant basically in the region of elastic smectic flow. We also examine the temperature effect and it reveals that the above dynamic moving phases and their transitions could be attributed to the interplay between thermal fluctuation and pinning potential. At sufficiently low temperature, the thermal fluctuation could be neglected and the colloids near the depinning move in the elastic crystal flow no matter what the pinning strength. In addition, the number of pinning centers is changed and when it is close to the number of colloids, there appears a peak in the critical driving force and a dip in the power-law scaling exponent, respectively. The peak and dip are more pronounced for higher pinning strength.  相似文献   

15.
A periodic array of atomic sites, described within a tight binding formalism is shown to be capable of trapping electronic states as it grows in size and gets stubbed by an ‘atom’ or an ‘atomic’ clusters from a side in a deterministic way. We prescribe a method based on a real space renormalization group method, that unravels a subtle correlation between the positions of the side coupled atoms and the energy eigenvalues for which the incoming particle finally gets trapped. We discuss how, in such conditions, the periodic backbone gets transformed into an array of infinite quantum wells in the thermodynamic limit. We present a case here, where the wells have a hierarchically distribution of widths, hosting standing wave solutions in the thermodynamic limit.  相似文献   

16.
The velocity and the diffusion constant are obtained for a periodic onedimensional hopping model of arbitrary periodN. These two quantities are expressed as explicit functions of all the hopping rates. The velocity and the diffusion constant of random systems are calculated by taking the limit N→Β. One finds by varying the distribution of hopping rates that the diffusion constant and the velocity are singular at different points. Lastly, several possible applications are proposed.  相似文献   

17.
The vibrational and electronic spectra of a semi-infinite crystal with a planar surface are modified by the presence of surface inhomogeneities or roughness such as ridges or grooves, quantum wires or tips. We develop a Green's function formalism to investigate the localized and resonant acoustic modes of shear horizontal polarization associated with the surface of a substrate supporting a single and a periodic array of wires. Each material is assumed to be an isotropic elastic medium. The calculation can be applied to an arbitrary choice of the shape and elastic parameters of the wires. The surface modes are obtained as well-defined peaks of the densities of states (DOS). In this paper, we calculate the variation of the density of states associated with the adsorption of a single wire, and the dispersion curves of the surface modes for a periodic array of wires on the flat surface of a substrate. We discuss their behaviors as a function of the elastic parameters and the relationship between resonant modes of the single wire and dispersion curves of the surface modes for a periodic structure. Received 6 December 2000  相似文献   

18.
Analytical calculation of a nonlinear periodic wave flow on the free surface of a charged layer of an ideal incompressible conducting liquid resting on a solid substrate is carried out for the case when fluctuation-induced forces (the dispersion component of the wedging pressure) have a decisive effect on the system. It is shown that wave flows emerge in the liquid in calculations of the second order of smallness in the wave amplitude, which is assumed to be small compared with the thickness of the liquid layer. These flows result from nonlinear interaction as nonlinear corrections to the waves set at the zero time. The field of fluctuation-induced forces displaces these flows toward the periphery of the area of influence of these forces. This effect takes place both in the presence of an external electric field near the free surface and in its absence. The sign and value of the nonlinear corrections depend on whether an electric field is present near the free surface of the liquid. In the presence of an electric field, the curvature of the crest of the nonlinear waves increases; in its absence, the curvature decreases.  相似文献   

19.
Robert Zwanzig 《Physica A》1983,117(1):277-280
The effective diffusion coefficient is evaluated for a Brownian particle diffusing in a two-dimensional channel bounded by periodically shaped walls. The result contain the scale factor for the conformal transformation that flattens the channel walls.  相似文献   

20.
The motion of a particle in a periodic potential is studied at low temperatures where transitions between the potential wells are caused by quantum tunnelling. The theory accounts for the dissipative interaction with an environment which for a wide range of parameters leads to incoherent tunnelling at a rate with a nonanalytic temperature dependence. The influence of an external force is determined and a nonanalytic response is found at T = 0. The case of a biased double-well system is treated too.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号