首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The formation of Ni2O2 can be observed from the condensation of effusive beams of Ni and O2 in neon or argon matrices. Observation of 58Ni(2)16O2, 58Ni60Ni16O2, 60Ni2(16)O2, Ni(2)18O2 and Ni(2)16O18O isotopic data for five fundamental transitions enable a discussion of structural parameters for matrix-isolated Ni2O2 in its cyclic ground state. Analysis of the nickel isotopic effects on the 58,60Ni2(16)O18O fundamentals suggest an elongated rhombic structure with a Ni-O bond force constant (240+/-10 N m-1) and NiONi bond angles around 79 degrees. The latter points to a Ni-Ni internuclear distance shorter than the O-O one. Low-lying singlet, triplet and quintet states have been studied using density functional theory with an unrestricted wave function and broken symmetry formalism. The high spin states and closed shell singlet states have been also investigated at the CCSD(T) level. The Ni2O2 ground state is calculated to be an antiferromagnetic singlet state with all the hybrid functionals. The first order properties (energies, geometry) calculated with a hybrid functional are very similar when different exchange-correlation functionals with different exact exchange fractions are used and the calculated ground state geometry (NiONi bond angle near 80 degrees, NiO bond distance around 179.5 pm) is in good agreement with the experimental estimate. Nevertheless, a correct reproduction of the experimental vibrational properties is found only when a hybrid functional containing an exact exchange fraction in the 0.4-0.5 range is used. The orbital and topological bonding analyses of Ni2O2 reveal that the relatively short Ni-Ni internuclear distance within the molecule should not be interpreted as a remaining metal-metal bonding interaction, but clearly indicate that the bonding driving force is due to the formation of four strong and highly polarized Ni-O bonds. Even in such an early stage of metal oxidation, the Ni-Ni interaction has virtually disappeared.  相似文献   

2.
The reactivity of atomic cobalt toward molecular oxygen in rare gas matrices has been reinvestigated. Experiments confirm that Co atoms in their a(4)F ground state are inert toward O(2) in solid argon and neon but reactive in the b(4)F first excited state, in agreement with the previous gas-phase study of Honma and co-workers. The formation of CoO(2) starting from effusive beams of Co and O(2) has been followed by IR absorption spectroscopy, both in neon and argon matrices. Our observations show that only the dioxo form, OCoO, is stabilized in the matrix and that IR absorptions previously assigned to the peroxo and superoxo forms are due to other, larger species. The present data strongly support the linear geometry in rare gas matrices proposed by Weltner and co-workers. We report on measurements on all IR-active fundamental modes for (16)OCo(16)O, (18)OCo(18)O, and (16)OCo(18)O with additional combination transitions supplying anharmonicity correction. This allows for a 5.93 +/- 0.02 mdyne/A CoO harmonic bond force constant in solid neon. Using the empirical relationship previously optimized for the CoO diatomics, an approximate value for the CoO internuclear bond distance is proposed (1.615 +/- 0.01A). In light of recent theoretical studies predicting (2)A(1) or (6)A(1) electronic ground states, the geometry and electronic structure of the OCoO molecule has also been reconsidered. Calculations carried out at the CCSD(T)/6-311G(3df) level indicate a linear structure with an r(e) = 1.62 A bond distance, consistent with the experimental estimate. For later studies of larger systems, where CCSD(T) calculations become too time-consuming, an effective DFT-based method is proposed which reproduces the basic electronic and geometrical properties of cobalt dioxide. Quantitative results are compared to the experimental data and high-level results regarding bond length and frequencies. This DFT method is used to propose a reaction pathway.  相似文献   

3.
Quantum chemical calculations were carried out to study the reaction of Al atom in the ground electronic state with H(2)O molecule. Examination of the potential energy surface revealed that the Al + H(2)O → AlO + H(2) reaction must be treated as a complex process involving two steps: Al + H(2)O → AlOH + H and AlOH + H → AlO + H(2). Activation barriers for these elementary reaction channels were calculated at B3LYP/6-311+G(3df,2p), CBS-QB3, and G3 levels of theory, and appropriate rate constants were estimated by using a canonical variational theory. Theoretical analysis exhibited that the rate constant for the Al + H(2)O → products reaction measured by McClean et al. must be associated with the Al + H(2)O → AlOH + H reaction path only. The process of direct HAlOH formation was found to be negligible at a pressure smaller than 100 atm.  相似文献   

4.
The reactions between CrO2Cl2 and a series of substituted phosphines have been investigated using matrix isolation infrared spectroscopy. For all of the phosphines except PF3, twin jet co-deposition of the two reagents into argon matrices at 14 K initially led to the formation of weak bands due to the corresponding phosphine oxide. For all of the phosphines, subsequent irradiation with light of lambda > 300 nm led to the growth of a number of intense new bands that have been assigned to the phosphine oxide complexed to CrCl2O, following an oxygen atom transfer reaction. Gas-phase, merged jet reactions prior to matrix deposition led to a significant yield of the uncomplexed phosphine oxide. Theoretical calculations at the B3LYP/6-311++g(d,2p) level were carried out in support of the experimental work, to support product band assignments and clarify the nature of the molecular complexes.  相似文献   

5.
The matrix-isolation technique has been combined with infrared spectroscopy to identify and characterize the products formed by irradiation of cage-paired CrCl(2)O(2) and a series of chloroethenes, C(2)H(x)()Cl(y)() (x + y = 4). For each system, oxygen-atom transfer occurred upon irradiation, yielding the corresponding acetyl chloride derivative and the Cl(2)CrO species. The products were formed in the same matrix cage and strongly interacted to form a distinct molecular complex after formation. Three different modes of interaction were explored computationally: eta(1) to the oxygen atom, eta(2) to the C=O bond, and eta(1) to the chlorine atom. In addition, a five-membered metallocycle and the chloroepoxide species were considered. No evidence was obtained for the chloroacetaldehyde derivative, indicating the occurrence of oxygen-atom attack at the more substituted carbon of the chloroethene. Evidence tentatively supporting the formation of the metallocycle was obtained as well. Theoretical calculations indicated that the acetyl chloride derivative was approximately 10 kcal/mol more stable than the corresponding chloroacetaldehyde species for each system at the B3LYP/6-311++g(d,2p) level of theory. The binding energy of each of the complexes was also found to be near 10 kcal/mol at this level of theory.  相似文献   

6.
The formation and structure of a novel species, a disuperoxo-cobalt dioxide complex (CoO(6)), has been investigated using matrix isolation in solid neon and argon, coupled to infrared spectroscopy and by quantum chemical methods. It is found that CoO(6) can be formed by successive complexation of cobalt dioxide by molecular oxygen without activation energy by diffusion of ground state O(2) molecules at 9K in the dark. The IR data on one combination and seven fundamentals, isotopic effects, and quantum chemical calculations are both consistent with an asymmetrical structure with two slightly nonequivalent oxygen ligands complexing a cobalt dioxide subunit. Evidence for other, metastable states is also presented, but the data are not complete. The electronic structure and formation pathway of this unique, formally +VI oxidation state, complex has been investigated using several functionals of current DFT within the broken-symmetry unrestricted formalism. It has been shown that the M06L pure local functional well reproduce the experimental observations. The ground electronic state is predicted to be an open shell (2)A' doublet with the quartet states above by more than 9 kcal/mol and the sextet lying even higher in energy. The ground state has a strong and complex multireference character that hinders the use of more precise multireference approaches and requires caution in the methodology to be used. The geometrical, energetic, and vibrational properties have been computed.  相似文献   

7.
Zhang  Yunju  Wang  Zhiguo  Huang  Baomei  Zhou  Yan  Sun  Yuxi 《Structural chemistry》2020,31(5):1897-1908
Structural Chemistry - CCSD(T)//B3LYP calculations of the potential energy surfaces (PESs) are associated with the rate constants and branch ratio of products using the RRKM...  相似文献   

8.
The dimerization of N-hydroxyurea (NH2CONHOH) has been investigated by FTIR matrix isolation spectroscopy and DFT(B3LYP)/6-311++G(2d,2p) calculations. The analysis of NH2CONHOH/Ar matrix spectra and comparison with theoretical ones reveal the formation of two types of dimers with a strong OH⋯O hydrogen bond. There is an additional weak interaction between the oxygen atom of the OH group of the proton donor molecule and the NH or NH2 group of the proton acceptor in both dimers, respectively. The identified structures correspond to local minima on the PES. The formation of the less stable structures not the most stable ones indicates that the creation of N-hydroxyurea dimers is related to the dipole-dipole interaction at the initial stage of the dimerization process, which favours generation of polar dimers.  相似文献   

9.
The structure, isomerization pathways and vibrational spectra of the important N-hydroxyurea (HU) molecule were studied by matrix isolation FT-IR spectroscopy and molecular orbital calculations undertaken at the MP2/6-311++G(2d,2p) level of theory. In agreement with theoretical predictions, 1Ea represents the most stable keto isomer in the gas-phase, being the dominant species trapped in argon matrices, while the 1Za isomer also contributes to the spectrum of isolated HU molecules. According to the calculated abundance values at the temperature of evaporation of the compound (393 K), the 1Ea and 1Za isomers together with a small contribution of 1Eb are expected to appear in the experimental spectra. Since the barrier for interconversion 1Ea? 1Eb is only ~2 kJ mol(-1), these two isomers are in equilibrium in the matrices and, at low temperature, the population of the less stable 1Eb form is too small to be observed. Full assignment of the observed spectra of N-hydroxyurea and its deuterium analogue was undertaken on the basis of comparison with theoretical data.  相似文献   

10.
In this work, the C(2)F(4)(X(1)A(g)) + O((3)P) reaction was investigated experimentally using molecular beam-threshold ionization mass spectrometry (MB-TIMS). The major primary products were observed to be CF(2)O (+ CF(2)) and CF(3) (+ CFO), with measured approximate yields of % versus %, respectively, neglecting minor products. Furthermore, the lowest-lying triplet and singlet potential energy surfaces for this reaction were constructed theoretically using B3LYP, G2M(UCC, MP2), CBS-QB3, and G3 methods in combination with various basis sets such as 6-31G(d), 6-311+G(3df), and cc-pVDZ. The primary product distribution for the multiwell multichannel reaction was then determined by RRKM statistical rate theory and weak-collision master equation analysis. It was found that the observed production of CF(3) (+ CFO) can only occur on the singlet surface, in parallel with formation of ca. 5 times more CF(2)O(X) + CF(2)(X(1)A(1)). This requires fast intersystem crossing (ISC) from the triplet to the singlet surface at a rate of ca. 4 x 10(12) s(-1). The theoretical calculations combined with the experimental results thus indicate that the yield of triplet CF(2)(?(3)B(1)) + CF(2)O formed on the triplet surface prior to ISC is < or =35%, whereas singlet CF(2)(X(1)A(1)) + CF(2)O is produced with yield > or =60%, after ISC. In addition, the thermal rate coefficients k(O + C(2)F(4)) in the T = 150-1500 K range were computed using multistate transition state theory and can be expressed as k(T) = 1.67 x 10(-16) x T(1.48) cm(3) molecule(-1) s(-1); they are in agreement with the available experimental results in the T = 298-500 K range.  相似文献   

11.
The C + PH(3) reaction is one of the simplest gas-phase processes which can produce molecular species containing P-C bonds. It could be of astrophysical importance and a reference for other phosphine reactions with carbon-containing molecular radicals. The dynamical aspects have been studied theoretically by quasi-classical trajectory methods in order to determine its rate as a function of the temperature, the branching ratios, and the molecular mechanisms. We have obtained a T(0.2) dependence of the capture rate. The total rate is affected by the existence of relatively high-lying saddle points for the isomerization of the CPH(3) complex but get a value of 0.82·10(-10) cm(3) s(-1) at 300 K, which is considered quite high for a neutral-neutral reaction and higher than those of similar reactions. Moreover, the total rate presents a weak dependence with the temperature. Our results indicate that several products containing P-C bonds are formed, the main reaction channel being the generation of HPCH + H.  相似文献   

12.
Infrared spectra of the CH(3)Cl:NO complex isolated in solid neon have been investigated. Most of the vibrational modes of the complex have been detected. The weak interaction between NO and CH(3)Cl in CH(3)Cl:NO is responsible for small shifts of the vibrational mode frequencies of both CH(3)Cl and NO molecules. The measured shifts range between -3.2 and + 3.8 cm(-1). On the basis of DFT calculations, different geometries have been explored for the complex, and it has been shown that the most stable structure is of C(1) symmetry. The calculated frequency shifts match well the experimental data.  相似文献   

13.
The potential energy surfaces of the two lowest-lying triplet electronic surfaces 3A' and 3A' for the O(3P) + C2H2 reaction were theoretically reinvestigated, using various quantum chemical methods including CCSD(T), QCISD, CBS-QCI/APNO, CBS-QB3, G2M(CC,MP2), DFT-B3LYP and CASSCF. An efficient reaction pathway on the electronically excited 3A' surface resulting in H(2S) + HCCO(A2A') was newly identified and is predicted to play an important role at higher temperatures. The primary product distribution for the multistate multiwell reaction was then determined by RRKM statistical rate theory and weak-collision master equation analysis using the exact stochastic simulation method. Allowing for nonstatistical behavior of the internal rotation mode of the initial 3A' adducts, our computed primary-product distributions agree well with the available experimental results, i.e., ca. 80% H(2S) + HCCO(X2A' + A2A') and 20% CH2(X3B1) + CO(X1sigma+) independent of temperature and pressure over the wide 300-2000 K and 0-10 atm ranges. The thermal rate coefficient k(O + C2H2) at 200-2000 K was computed using multistate transition state theory: k(T) = 6.14 x 10(-15)T (1.28) exp(-1244 K/T) cm3 molecule(-1) s(-1); this expression, obtained after reducing the CBS-QCI/APNO ab initio entrance barriers by 0.5 kcal/mol, quasi-perfectly matches the experimental k(T) data over the entire 200-2000 K range, spanning 3 orders of magnitude.  相似文献   

14.
The atmospheric oxidation of amines proceeds via initial radical attack at C–H or N–H bonds to form carbon- and nitrogen-centered radicals, respectively. It is conventionally assumed that nitrogen-centered aminyl radicals react slowly with oxygen in the troposphere and associate predominantly with the radicals NO and NO2 to form toxic nitrosamines and nitramines. We have used theoretical kinetic modeling techniques to study the prototypical CH3NH + O2 reaction and have shown that it proceeds to CH2NH + HO2 under tropospheric conditions with a rate coefficient of 3.6 × 10−17 cm3 molecule−1 s−1. Although this value is low compared to the competing NOx reactions (∼10−11 cm3 molecule−1 s−1), the much higher concentration of O2 versus NOx in air makes it the dominant process in the atmospheric oxidation of methylamine for NOx concentrations below 100 ppb. The mechanism identified here is available to amines with primary, secondary, and tertiary α carbons and suggests that they may be less likely to form nitramines and nitrosamines than is currently thought.  相似文献   

15.
The triplet potential energy surface of the O((3)P) + CS(2) reaction is investigated by using various quantum chemical methods including CCSD(T), QCISD(T), CCSD, QCISD, G3B3, MPWB1K, BB1K, MP2, and B3LYP. The thermal rate coefficients for the formation of three major products, CS + SO ((3)Σ(-)), OCS + S ((3)P) and CO + S(2) ((3)Σ(-)(g)) were computed by using transition state and RRKM statistical rate theories over the temperature range of 200-2000 K. The computed k(SO + CS) by using high-level quantum chemical methods is in accordance with the available experimental data. The calculated rate coefficients for the formation of OCS + S ((3)P) and CO + S(2) ((3)Σ(-)(g)) are much lower than k(SO + CS); hence, it is predicted that these two product channels do not contribute significantly to the overall rate coefficient.  相似文献   

16.
We report a theoretical study on the reaction of ozone with hydroxyl radical, which is important in the chemistry of the atmosphere and in particular participates in stratospheric ozone destruction. The reaction is a complex process that involves, in the first stage, a pre-reactive hydrogen-bonded complex (C1), which is formed previous to two transition states (TS1 and TS2) involving the addition of the hydroxyl radical to ozone, and leads to the formation of HO4 polyoxide radical before the release of the products HO2 and O2. The reaction is computed to be exothermic by 42.72 kcal mol(-1), which compares quite well with the experimental estimate, and the energy barriers of TS1 and TS2 with respect to C1 are computed to be 1.80 and 2.26 kcal mol(-1) at 0 K. A kinetic study based on the variational transition state theory (VTST) predicts a rate constant, at 298 K, of 7.37 x 10(-14) cm3 molecule(-1) s(-1), compared to the experimentally recommended value of 7.25 x 10(-14) cm3 molecule(-1) s(-1).  相似文献   

17.
We report a quasi‐classical trajectory study of the S + HO2 reaction using a previously reported global potential energy surface for the ground electronic state of HSO2. Zero‐point energy leakage is approximately accounted for by using the vibrational energy quantum mechanical threshold method. Calculations are carried out both for specific ro‐vibrational states of the reactants and thermalized ones, with rate constants being reported as a function of temperature. The results suggest that the title reaction is capture type, with OH and SO showing as the most favorable products. The internal energy distribution of such products and the reaction mechanism are also investigated. © 2008 Wiley Periodicals, Inc. Int J Chem Kinet 40: 533–540, 2008  相似文献   

18.
Long B  Long ZW  Wang YB  Tan XF  Han YH  Long CY  Qin SJ  Zhang WJ 《Chemphyschem》2012,13(1):323-329
The formic acid catalyzed gas‐phase reaction between H2O and SO3 and its reverse reaction are respectively investigated by means of quantum chemical calculations at the CCSD(T)//B3LYP/cc‐pv(T+d)z and CCSD(T)//MP2/aug‐cc‐pv(T+d)z levels of theory. Remarkably, the activation energy relative to the reactants for the reaction of H2O with SO3 is lowered through formic acid catalysis from 15.97 kcal mol?1 to ?15.12 and ?14.83 kcal mol?1 for the formed H2O ??? SO3 complex plus HCOOH and the formed H2O ??? HCOOH complex plus SO3, respectively, at the CCSD(T)//MP2/aug‐cc‐pv(T+d)z level. For the reverse reaction, the energy barrier for decomposition of sulfuric acid is reduced to ?3.07 kcal mol?1 from 35.82 kcal mol?1 with the aid of formic acid. The results show that formic acid plays a strong catalytic role in facilitating the formation and decomposition of sulfuric acid. The rate constant of the SO3+H2O reaction with formic acid is 105 times greater than that of the corresponding reaction with water dimer. The calculated rate constant for the HCOOH+H2SO4 reaction is about 10?13 cm3 molecule?1 s?1 in the temperature range 200–280 K. The results of the present investigation show that formic acid plays a crucial role in the cycle between SO3 and H2SO4 in atmospheric chemistry.  相似文献   

19.
Infrared spectra of N4-hydroxycytosine isolated in argon and nitrogen low-temperature matrixes are reported. The compound was found to adopt the syn structure of the imino-oxo tautomeric form exclusively. A photoreaction (lambda > 250 nm) converting this form into the anti isomer was observed. The reaction is reversible and leads to a photostationary point. The initial infrared spectrum and the spectrum of the photoproduct were assigned to the syn and anti isomers, respectively. This assignment is based on a close agreement between the experimental spectra and the spectra theoretically simulated at the DFT(B3LYP)/6-31++G** level of theory.  相似文献   

20.
The reaction of vinyl radical with molecular oxygen in solid argon has been studied using matrix isolation infrared absorption spectroscopy. The vinyl radical was produced through high frequency discharge of ethylene. The vinyl radical reacted with oxygen spontaneously on annealing to form the vinylperoxy radical C(2)H(3)OO with the O-O bond in a trans position relative to the C-C bond, which is characterized by O-O stretching and out-of-plane CH(2) bending vibrations at 1140.7 and 875.5 cm(-1). The vinylperoxy radical underwent visible photon-induced dissociation to the CH(2)OH(CO) complex or CH(2)OH+CO, which has never been considered in previous studies. The CH(2)OH(CO) product was predicted to be more thermodynamically accessible than the previously reported major HCO+H(2)CO channel, and is most likely produced by hydrogen atom transfer from the first-formed H(2)CO-HCO pair in solid argon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号