首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On the origin of respiratory artifacts in BOLD-EPI of the human brain   总被引:6,自引:0,他引:6  
BOLD-based functional MRI (fMRI) can be used to explicitly measure hemodynamic aspects and functions of human neuro-physiology. As fMRI measures changes in regional cerebral blood flow and volume as well as blood oxygenation, rather than neuronal brain activity directly, other processes that may change the above parameters have to be examined closely to assess sensitivity and specificity of fMRI results. Physiological processes that can cause artifacts include cardiac action, breathing and vasomotion. Although there has been substantial research on physiological artifacts and appropriate compensation methods, controversy still remains on the mechanisms that cause the fMRI signal fluctuations. Respiratory-correlated fluctuations may either be induced by changes of the magnetic field homogeneity due to moving organs, intra-thoracic pressure differences, respiration-dependent vasodilation or oxygenation differences. The aim of this study was to characterize the impact of different breathing patterns by varying respiration frequency and/or tidal volume on EPI time courses of the resting human brain. The amount of respiration-related oscillations during three respiration patterns was quantified, and statistically significant differences were obtained in white matter only: p < 0.03 between 6 vs. 12 ml/kg body weight end tidal volume at a respiration frequency of 15/min, p < 0.03 between 12 vs. 6 ml/kg body weight and 15 vs. 10 respiration cycles/min. There was no significant difference between 15 vs. 10 respiration cycles/min at an end tidal volume of 6 ml/kg body weight (p = 0.917). In addition, the respiration-affected brain regions were very similar with EPI readout in the a-p and l-r direction. Based on our results and published literature we hypothesize that venous oxygenation oscillations due to changing intra-thoracic pressure represent a major factor for respiration-related signal fluctuations and increase significantly with increasing end tidal volume in white matter only.  相似文献   

2.
Functional MRI (fMRI) has evolved from simple observations of regional changes in MRI signals caused by cortical activity induced by a task or stimulus, to task-free acquisitions of images in a resting state. Such resting state signals contain low frequency fluctuations which may be correlated between voxels, and strongly correlated regions are deemed to reflect functional connectivity within synchronized circuits. Resting state functional connectivity (rsFC) measures have been widely adopted by the neuroscience community, and are being used and interpreted as indicators of intrinsic neural circuits and their functional states in a broad range of applications, both basic and clinical. However, there has been relatively little work reported that validates whether inter-regional correlations in resting state fluctuations of fMRI (rsfMRI) signals actually measure functional connectivity between brain regions, or to establish how MRI data correlate with other metrics of functional connectivity. In this mini-review, we summarize recent studies of rsFC within mesoscopic scale cortical networks (100 μm–10 mm) within a well defined functional region of primary somatosensory cortex (S1), as well as spinal cord and brain white matter in non-human primates, in which we have measured spatial patterns of resting state correlations and validated their interpretation with electrophysiological signals and anatomic connections. Moreover, we emphasize that low frequency correlations are a general feature of neural systems, as evidenced by their presence in the spinal cord as well as white matter. These studies demonstrate the valuable role of high field MRI and invasive measurements in an animal model to inform the interpretation of human imaging studies.  相似文献   

3.
Functional MR imaging of the alert, behaving monkey is being used more and more often to detect activation patterns and guide electrophysiological research investigating the neural basis of behavior. Several labs have reported fMRI data from the awake monkey, but none of them has studied and systematically corrected the effects of monkeys' motion on fMRI time series. In this study, a significant refinement of acquisition and correction strategies is reported that can be used to minimize magnetic susceptibility artifacts induced by respiration and by jaw and body movement. Real-time acquisition of sensor signals (e.g., signals induced by jaw and body movement) and MR navigator data were combined to optimize fMRI signal-correction strategies. Within trials, the artifact-induced off-resonance changes were small and mainly reflected the effects of respiration; between trials, movements caused major changes of global frequency and shim (>20 Hz/cm). Several methods were used to assess the stability of the fMRI series: k-space analysis ('dynamic intensity and off-resonance changes in k-space', dubbed DICK and DORK) and image analysis using a Laplace operator and a center-of-mass metric. The variability between trials made it essential to correct for inter-trial variations. On the other hand, images were sufficiently stable with our approach to perform fMRI evaluations on single trials before averaging of trials. Different motion correction strategies were compared: DORK, McFLIRT (rigid body model with three translations and three rotations) and 2D image alignment based on a center-of-mass detection (in-plane translation). The latter yielded the best results and proved to be fast and robust for intra- and inter-trial alignment. Finally, fMRI in the behaving monkey was tested for spatial and temporal reproducibility on a trial-to-trial basis. Highly activated voxels also displayed good reproducibility between trials. On average, the BOLD amplitude response to a short 3-s visual stimulus was close to 2%.  相似文献   

4.
High-resolution functional magnetic resonance imaging (fMRI) at high field (9.4 T) has been used to measure functional connectivity between subregions within the primary somatosensory (SI) cortex of the squirrel monkey brain. The hand-face region within the SI cortex of the squirrel monkey has been previously well mapped with functional imaging and electrophysiological and anatomical methods, and the orderly topographic map of the hand region is characterized by a lateral to medial representation of individual digits in four subregions of areas 3a, 3b, 1 and 2. With submillimeter resolution, we are able to detect not only the separate islands of activation corresponding to vibrotactile stimulations of single digits but also, in subsequent acquisitions, the degree of correlation between voxels within the SI cortex in the resting state. The results suggest that connectivity patterns are very similar to stimulus-driven distributions of activity and that connectivity varies on the scale of millimeters within the same primary region. Connectivity strength is not a reflection of global larger-scale changes in blood flow and is not directly dependent on distance between regions. Preliminary electrophysiological recordings agree well with the fMRI data. In human studies at 7 T, high-resolution fMRI may also be used to identify the same subregions and assess responses to sensory as well as painful stimuli, and to measure connectivity dynamically before and after such stimulations.  相似文献   

5.
Xu Y  Wu G  Rowe DB  Ma Y  Zhang R  Xu G  Li SJ 《Magnetic resonance imaging》2007,25(7):1079-1088
Due to the presence of artifacts induced by fast-imaging acquisition in functional magnetic resonance imaging (fMRI) studies, it is very difficult to estimate the variance of thermal noise by traditional methods in magnitude images. Moreover, the existence of incidental phase fluctuations impairs the validity of currently available solutions based on complex datasets. In this article, a time-domain model is proposed to generalize the analysis of complex datasets for nonbrain regions by incorporating artifacts and phase fluctuations. Based on this model, a novel estimation schema has been developed to find an appropriate set of voxels in nonbrain regions according to their levels of artifact and phase fluctuation. In addition, noise intensity from these voxels is estimated. The whole schema is named COmplex-Model-Based Estimation (COMBE). Theoretical and experimental results demonstrate that the proposed COMBE method provides a better estimation of thermal noise in fMRI studies compared with previously proposed methods and suggest that the new method can adapt to a broader range of applications, such as functional connectivity studies, evaluation of sequence designs and reconstruction schemas.  相似文献   

6.
Functional magnetic resonance imaging (fMRI) is an effective tool for the measurement of brain neuronal activities. To date, several statistical methods have been proposed for analyzing fMRI datasets to select true active voxels among all the voxels appear to be positively activated. Finding a reliable and valid activation map is very important and becomes more crucial in clinical and neurosurgical investigations of single fMRI data, especially when pre-surgical planning requires accurate lateralization index as well as a precise localization of activation map.Defining a proper threshold to determine true activated regions, using common statistical processes, is a challenging task. This is due to a number of variation sources such as noise, artifacts, and physiological fluctuations in time series of fMRI data which affect spatial distribution of noise in an expected uniform activated region. Spatial smoothing methods are frequently used as a preprocessing step to reduce the effect of noise and artifacts. The smoothing may lead to a shift and enlargement of activation regions, and in some extend, unification of distinct regions.In this article, we propose a bootstrap resampling technique for analyzing single fMRI dataset with the aim of finding more accurate and reliable activated regions. This method can remove false positive voxels and present high localization accuracy in activation map without any spatial smoothing and statistical threshold setting.  相似文献   

7.
Recognition of a brain region’s interaction is an important field in neuroscience. Most studies use the Pearson correlation to find the interaction between the regions. According to the experimental evidence, there is a nonlinear dependence between the activities of different brain regions that is ignored by Pearson correlation as a linear measure. Typically, the average activity of each region is used as input because it is a univariate measure. This dimensional reduction, i.e., averaging, leads to a loss of spatial information across voxels within the region. In this study, we propose using an information-theoretic measure, multivariate mutual information (mvMI), as a nonlinear dependence to find the interaction between regions. This measure, which has been recently proposed, simplifies the mutual information calculation complexity using the Gaussian copula. Using simulated data, we show that the using this measure overcomes the mentioned limitations. Additionally using the real resting-state fMRI data, we compare the level of significance and randomness of graphs constructed using different methods. Our results indicate that the proposed method estimates the functional connectivity more significantly and leads to a smaller number of random connections than the common measure, Pearson correlation. Moreover, we find that the similarity of the estimated functional networks of the individuals is higher when the proposed method is used.  相似文献   

8.
Relaxation parameter estimation and brain activation detection are two main areas of study in magnetic resonance imaging (MRI) and functional magnetic resonance imaging (fMRI). Relaxation parameters can be used to distinguish voxels containing different types of tissue whereas activation determines voxels that are associated with neuronal activity. In fMRI, the standard practice has been to discard the first scans to avoid magnetic saturation effects. However, these first images have important information on the MR relaxivities for the type of tissue contained in voxels, which could provide pathological tissue discrimination. It is also well-known that the voxels located in gray matter (GM) contain neurons that are to be active while the subject is performing a task. As such, GM MR relaxivities can be incorporated into a statistical model in order to better detect brain activation. Moreover, although the MR magnetization physically depends on tissue and imaging parameters in a nonlinear fashion, a linear model is what is conventionally used in fMRI activation studies. In this study, we develop a statistical fMRI model for Differential T2? ConTrast Incorporating T1 and T2? of GM, so-called DeTeCT-ING Model, that considers the physical magnetization equation to model MR magnetization; uses complex-valued time courses to estimate T1 and T2? for each voxel; then incorporates gray matter MR relaxivities into the statistical model in order to better detect brain activation, all from a single pulse sequence by utilizing the first scans.  相似文献   

9.
Understanding the impact of variations in the acoustic signal is critical for the development of auditory and language fMRI as an experimental tool. We describe the dependence of the BOLD signal and speech intelligibility on the intensity of auditory stimuli. Eighteen subjects were imaged on a 1.5-T MRI scanner. Speech stimuli were English monosyllabic words played at five intensity levels. Intrasubject reproducibility was measured on one subject by presenting the stimulus five times at the same intensity level. Intelligibility was measured during data acquisition as subjects signaled when hearing two targets. Each functional trial consisted of four cycles (30 s off-30 s on). Five oblique slices covering primary and association auditory areas were imaged. Activated voxels were identified by cross-correlation analysis and their percent signal change (delta S) was measured. Intersubject differences in activation extent, asymmetry, and dependence on intensity were striking. Volume of activation was significantly greater in the left than in the right hemisphere. Intrasubject reproducibility for delta S was higher than for volume of activation. delta S and intelligibility showed a similar dependence on intensity suggesting that not only intensity but also intelligibility affect the fMRI signal.  相似文献   

10.
Functional magnetic resonance imaging (fMRI) often relies on a hemodynamic response function (HRF), the stereotypical blood oxygen level dependent (BOLD) response elicited by a brief (< 4 s) stimulus. Early measurements of the HRF used coarse spatial resolutions (≥ 3 mm voxels) that would generally include contributions from white matter, gray matter, and the extra-pial compartment (the space between the pial surface and skull including pial blood vessels) within each voxel. To resolve these contributions, high-resolution fMRI (0.9-mm voxels) was performed at 3 T in early visual cortex and its apposed white-matter and extra-pial compartments. The results characterized the depth dependence of the HRF and its reliability during nine fMRI sessions. Significant HRFs were observed in white-matter and extra-pial compartments as well as in gray matter. White-matter HRFs were faster and weaker than in the gray matter, while extra-pial HRFs were comparatively slower and stronger. Depth trends of the HRF peak amplitude were stable throughout a broad depth range that included all three compartments for each session. Across sessions, however, the depth trend of HRF peak amplitudes was stable only in the white matter and deep-intermediate gray matter, while there were strong session-to-session variations in the superficial gray matter and the extra-pial compartment. Thus, high-resolution fMRI can resolve significant and dynamically distinct HRFs in gray matter, white matter, and extra-pial compartments.  相似文献   

11.
This paper investigates how well different kinds of fMRI functional connectivity analysis reflect the underlying interregional neural interactions. This is hard to evaluate using real experimental data where such relationships are unknown. Rather, we use a biologically realistic neural model to simulate both neuronal activities and multiregional fMRI data from a blocked design. Because we know how every element in the model is related to every other element, we can compare functional connectivity measurements across different spatial and temporal scales. We focus on (1) psycho-physiological interaction (PPI) analysis, which is a simple brain connectivity method that characterizes the activity in one brain region by the interaction between another region's activity and a psychological factor, and (2) interregional correlation analysis. We investigated the neurobiological underpinnings of PPI using simulated neural activities and fMRI signals generated by a large-scale neural model that performs a visual delayed match-to-sample task. Simulated fMRI data are generated by convolving integrated synaptic activities (ISAs) with a hemodynamic response function. The simulation was done under three task conditions: high-attention, low-attention and a control task ('passive viewing'). We investigated how biological and scanning parameters affect PPI and compared these with functional connectivity measures obtained using correlation analysis. We performed correlational and PPI analyses with three types of time-series data: ISA, fMRI and deconvolved fMRI (which yields estimated neural signals) obtained using a deconvolution algorithm. The simulated ISA can be considered as the 'gold standard' because it represents the underlying neural activity. Our main findings show (1) that evaluating the change in an interregional functional connection using the difference in regression coefficients (as is essentially done in the PPI method) produces results that better reflect the underlying changes in neural interrelationships than does evaluating the functional connectivity difference as a change in correlation coefficient; (2) that using fMRI and deconvolved fMRI data led to similar conclusions in the PPI-based functional connectivity results, and these generally agreed with the nature of the underlying neural interactions; and (3) the functional connectivity correlation measures often led to different conclusions regarding significance for different scanning and hemodynamic parameters, but the significances of the PPI regression parameters were relatively robust. These results highlight the way in which neural modeling can be used to help validate the inferences one can make about functional connectivity based on fMRI data.  相似文献   

12.
Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies.  相似文献   

13.
The aim of the present study was to analyze blood oxygenation level-dependent (BOLD) signal variation during an apnea-based task in order to assess the capability of a functional magnetic resonance imaging (fMRI) procedure to estimate cerebral vascular dynamic effects. We measured BOLD contrast by hierarchical cluster analysis in healthy subjects undergoing an fMRI experiment, in which the task paradigm was one phase of inspirational apnea (IA). By processing the time courses of the fMRI experiment, analysis was performed only on a subclass of all the possible signal patterns; basically, root mean square and absolute variation differences have been calculated. Considering the baseline value obtained by computing the mean value of the initial rest period as reference, particular voxels showed relative important variations during the IA task and during the recovery phase following the IA. We focused our interest on the signal response of voxels that would correspond mainly to white and gray matter regions and that also may be affected by the proximity of large venous vessels. The results are presented as maps of space-temporal distribution of time series variations with two levels of hierarchical clustering among voxels with low to high initial response. Furthermore, we have presented a clustering of the signal response delay, conducting to a partition and identification of specified brain sites.  相似文献   

14.
The blood-oxygenation-level-dependent (BOLD) signal is an indirect hemodynamic signal that is sensitive to cerebral blood flow (CBF), cerebral blood volume (CBV) and cerebral metabolic rate of oxygen. Therefore, the BOLD signal amplitude and dynamics cannot be interpreted unambiguously without additional physiological measurements, and thus, there remains a need for a functional magnetic resonance imaging (fMRI) signal, which is more closely related to the underlying neuronal activity. In this study, we measured CBF with continuous arterial spin labeling, CBV with an exogenous contrast agent and BOLD combined with intracortical electrophysiological recording in the primary visual cortex of the anesthetized monkey. During inhalation of 6% CO2, it was observed that CBF and CBV are not further increased by a visual stimulus, although baseline CBF for 6% CO2 is below the maximal value of CBF. In contrast, the electrophysiological response to the stimulation was found to be preserved during hypercapnia. As a consequence, the simultaneously measured BOLD signal responds negatively to a visual stimulation for 6% CO2 inhalation in the same voxels responding positively during normocapnia. These observations suggest that the fMRI response to a sensory stimulus for 6% CO2 inhalation occurs in the absence of a hemodynamic response, and it therefore directly reflects oxygen extraction into the tissue.  相似文献   

15.
The cerebral cortex is the main target of analysis in many functional magnetic resonance imaging (fMRI) studies. Since only about 20% of the voxels of a typical fMRI data set lie within the cortex, statistical analysis can be restricted to the subset of the voxels obtained after cortex segmentation. While such restriction does not influence conventional univariate statistical tests, it may have a substantial effect on the performance of multivariate methods.

Here, we describe a novel approach for data-driven analysis of single-subject fMRI time series that combines techniques for the segmentation and reconstruction of the cortical surface of the brain and the spatial independent component analysis (sICA) of the functional time courses (TCs). We use the mesh of the white matter/gray matter boundary, automatically reconstructed from high-spatial-resolution anatomical MR images, to limit the sICA decomposition of a coregistered functional time series to those voxels which are within a specified region with respect to the cortical sheet (cortex-based ICA, or cbICA). We illustrate our analysis method in the context of fMRI blocked and event-related experimental designs and in an fMRI experiment with perceptually ambiguous stimulation, in which an a priori specification of the stimulation protocol is not possible.

A comparison between cbICA and conventional hypothesis-driven statistical methods shows that cortical surface maps and component TCs blindly obtained with cbICA reliably reflect task-related spatiotemporal activation patterns. Furthermore, the advantages of using cbICA when the specification of a temporal model of the expected hemodynamic response is not straightforward are illustrated and discussed. A comparison between cbICA and anatomically unconstrained ICA reveals that — beside reducing computational demand — the cortex-based approach improves the fitting of the ICA model in the gray matter voxels, the separation of cortical components and the estimation of their TCs, particularly in the case of fMRI data sets with a complex spatiotemporal statistical structure.  相似文献   


16.
Low frequency oscillations, which are temporally correlated in functionally related brain regions, characterize the mammalian brain, even when no explicit cognitive tasks are performed. Functional connectivity MR imaging is used to map regions of the resting brain showing synchronous, regional and slow fluctuations in cerebral blood flow and oxygenation. In this study, we use a hierarchical clustering method to detect similarities of low-frequency fluctuations. We describe one measure of correlations in the low frequency range for classification of resting-state fMRI data. Furthermore, we investigate the contribution of motion and hardware instabilities to resting-state correlations and provide a method to reduce artifacts. For all cortical regions studied and clusters obtained, we quantify the degree of contamination of functional connectivity maps by the respiratory and cardiac cycle. Results indicate that patterns of functional connectivity can be obtained with hierarchical clustering that resemble known neuronal connections. The corresponding voxel time series do not show significant correlations in the respiratory or cardiac frequency band.  相似文献   

17.
Most modern techniques for functional magnetic resonance imaging (fMRI) rely on blood-oxygen-level-dependent (BOLD) contrast as the basic principle for detecting neuronal activation. However, the measured BOLD effect depends on a transfer function related to neurophysiological changes accompanying electrical neural activation. The spatial accuracy and extension of the region of interest are determined by vascular effect, which introduces incertitude on real neuronal activation maps. Our efforts have been directed towards the development of a new methodology that is capable of combining morphological, vascular and functional information; obtaining new insight regarding foci of activation; and distinguishing the nature of activation on a pixel-by-pixel basis. Six healthy volunteers were studied in a parametric auditory functional experiment at 3 T; activation maps were overlaid on a high-resolution brain venography obtained through a novel technique. The BOLD signal intensities of vascular and nonvascular activated voxels were analyzed and compared: it was shown that nonvascular active voxels have lower values for signal peak (P<10(-7)) and area (P<10(-8)) with respect to vascular voxels. The analysis showed how venous blood influenced the measured BOLD signals, supplying a technique to filter possible venous artifacts that potentially can lead to misinterpretation of fMRI results. This methodology, although validated in the auditory cortex activation, maintains a general applicability to any cortical fMRI study, as the basic concepts on which it relies on are not limited to this cortical region. The results obtained in this study can represent the basis for new methodologies and tools that are capable of adding further characterization to the BOLD signal properties.  相似文献   

18.
Correctly identifying voxels or regions of interest (ROI) that actively respond to a given stimulus is often an important objective/step in many functional magnetic resonance imaging (fMRI) studies. In this article, we study a nonparametric method to detect active voxels, which makes minimal assumption about the distribution of blood oxygen level-dependent (BOLD) signals. Our proposal has several interesting features. It uses time lagged correlation to take into account the delay in response to the stimulus, due to hemodynamic variations. We introduce an input permutation method (IPM), a type of block permutation method, to approximate the null distribution of the test statistic. Also, we propose to pool the permutation-derived statistics of preselected voxels for a better approximation to the null distribution. Finally, we control multiple testing error rate using the local false discovery rate (FDR) by Efron [Correlation and large-scale simultaneous hypothesis testing. J Am Stat Assoc 102 (2007) 93–103] and Park et al. [Estimation of empirical null using a mixture of normals and its use in local false discovery rate. Comput Stat Data Anal 55 (2011) 2421–2432] to select the active voxels.  相似文献   

19.
A simple phase error correction technique used for field map estimation with a generally available dual-echo gradient-echo (GRE) sequence is presented. Magnetic field inhomogeneity maps estimated using two separate GRE volume acquisitions at different echo times are prone to dynamic motion errors between acquisitions. By using the dual-echo sequence, the data are collected during two back-to-back readout gradients in opposite polarity after a single radio frequency pulse, and interecho motion artifacts and alignment errors in field map estimation can be factored out. Residual phase error from the asymmetric readout pulses is modeled as an affine term in the readout direction. Results from phantom and human data suggest that the first-order phase correction term stays constant over time and, hence, can be applied to different data acquired with the same protocol over time. The zero-order phase correction term may change with time and is estimated empirically for different scans.  相似文献   

20.
A new pulse sequence designed for magnetic resonance imaging of the entire thoracic cavity is described. This sequence, called 3DPAUSE, is a rapid three-dimensional Fourier transform (3DFT) sequence with periodic pauses for breathing and additional rf pulses after each pause to restore the magnetization to steady-state before data acquisition resumes. Cardiac motion artifacts are effectively removed by signal averaging. Respiratory motion artifacts are removed by breath hold. Image artifacts caused by an inadequate number of pauses or by inappropriate placement of the pauses within a scan are shown, and ways to avoid these artifacts are discussed. 3DPAUSE provides the ability to acquire three-dimensional arrays in the thoracic cavity with minimal artifacts from respiratory and cardiac motions in a clinically reasonable time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号