首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the lateral diffusion properties of 2,2'-di-O-decyl-3,3'-di-O-(eicosanyl)-bis-(rac-glycero)-1,1'-diphosphocholine (C20BAS) using pulsed-field gradient NMR (PFG-NMR) and fluorescence recovery after photobleaching (FRAP). C20BAS membranes display a melting transition at Tm = 15.7 degrees C, as determined by differential scanning calorimetry and 31P NMR chemical shift anisotropy. The lateral diffusion coefficient of C20BAS, as determined by PFG-NMR and FRAP, at 25 degrees C, were DPFG-NMR = 1.9 +/- 0.6 x 10(-8) cm2/s and DFRAP C20BAS = 1.2 +/- 0.1 x 10(-8) cm2/s, respectively. In comparison, the lateral diffusion coefficient of the monopolar phospholipid, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), was 1.8 +/- 0.9 x 10(-8) and 2.5 +/- 0.9 x 10(-8) cm2/s using PFG-NMR and FRAP, respectively.  相似文献   

2.
The complexes of cyclohexylacetic acid and cholic acid with beta-cyclodextrin were studied by NMR diffusion coefficient measurements. The diffusion coefficient of the 1:1 cyclohexylacetic acid/beta-cyclodextrin complex, K(a) = 1800 +/- 100 M(-1), is slightly slower (3.23 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin (3.29 +/- 0.07 x 10(-6) cm(2) s(-1)). The diffusion coefficient of the 1:1 cholic acid/beta-cyclodextrin complex, K(a) = 5900 +/- 800 M(-1), is significantly slower (2.93 +/- 0.07 x 10(-6) cm(2) s(-1)) than that of beta-cyclodextrin. The results indicate that caution should be exercised when studying host-guest complexation by the so-called 'single point' technique. A novel data treatment is introduced which takes into account the diffusion behavior of all of the species when determining K(a). Experimentally determined diffusion coefficients of complexes are also a useful probe of the size of host-guest complexes.  相似文献   

3.
黄仲立  马林  刘伟  程玉华 《色谱》1999,17(2):196-199
DFP酸可催化水解二异丙基氟磷酸酯(DFP)分子中的P-F键,使其断裂产生磷酸二异丙基酯和HF。根据电位滴定法和离子选择电极法对猪肝中发现的两种DFP水解酶活力测定的结果,利用毛细管等速电泳分析仪对这两种酶催化DFP水解的产物进行了定性分析。结果表明,猪肝中小分子质量的酸催化DFP水解反应时,并非水解P-F键.而是水解P-OR键,说明该酶是一种催化DFP分子中磷酯健水解的磷酯酶。  相似文献   

4.
Rate constants for the reactions of OH radicals and NO3 radicals with dimethyl phosphonate [DMHP, (CH3O)2P(O)H], dimethyl methylphosphonate [DMMP, (CH3O)2P(O)CH3], and dimethyl ethylphosphonate [DMEP, (CH3O)2P(O)C2H5] have been measured at 296 +/- 2 K and atmospheric pressure using relative rate methods. The rate constants obtained for the OH radical reactions (in units of 10(-12) cm3 molecule(-1) s(-1)) were as follows: DMHP, 4.83 +/- 0.25; DMMP, 10.4 +/- 0.6; and DMEP, 17.0 +/- 1.0, with a deuterium isotope effect of k(OH + DMMP)/k(OH + DMMP-d9) = 4.8 +/- 1.2. The rate constants obtained for the NO3 radical reactions (in units of 10(-16) cm3 molecule(-1) s(-1)) were as follows: DMHP, < 1.4; DMMP, 2.0 +/- 1.0; and DMEP, 3.4 +/- 1.4. Upper limits to the rate constants for the O3 reactions of < 8 x 10(-20) cm3 molecule(-1) s(-1) for DMHP and < 6 x 10(-20) cm3 molecule(-1) s(-1) for DMMP and DMEP were determined. Products of the reactions of OH radicals with DMHP, DMMP, and DMEP were investigated in situ using atmospheric pressure ionization mass spectrometry (API-MS) and, for the DMMP and DMEP reactions, Fourier transform infrared (FT-IR) spectroscopy. API-MS analyses showed the formation of products of molecular weight 96 and 126, attributed to CH3OP(O)(H)OH and (CH3O)2P(O)OH, respectively, from DMHP; of molecular weight 110, attributed to CH3OP(O)(CH3)OH, from DMMP; and of molecular weight 124 and 126, attributed to CH3OP(O)(C2H5)OH and (CH3O)2P(O)OH, respectively, from DMEP. FT-IR analyses showed formation (values given are % molar yields) of the following: from DMMP, CO, 54 +/- 6; CO2, 5 +/- 1 in dry air; HCHO, 3.9 +/- 0.7; HC(O)OH, < 1.4 in dry air; RONO2, approximately 4; and formate ester, approximately 8; and from DMEP, CO, 50 +/- 7; CO2, 11 +/- 4; CH3CHO, 18 +/- 8; HCHO, < 7; HC(O)OH, < 6; RONO2, < or = 5; and formate ester, 5.0 +/- 1.5. Possible reaction mechanisms are discussed.  相似文献   

5.
黄仲立  刘伟 《色谱》1999,17(2):196-198
DFP酶可催化水解二异丙基氰磷酸酯分子中的P-F键,使其断裂产生磷酸二异丙基酯和HF。根据电位滴定法和离子选择电极法对猪肝中发现的两种DFP水解酶活力测定的结果,利用毛细管等速电泳分析仪对这两种酶催化DFP水解的产物进行了定性分析。  相似文献   

6.
Gas transport of carbon dioxide in poly[bisphenol A carbonate-co-4,4'-(3,3,5-trimethylcyclohexylidene)diphenol carbonate] films over a wide range of pressure is described. The interpretation of the experimental results in terms of the dual mode model allowed the evaluation of the parameters of the model that govern the gas permeation process. The value of the diffusion coefficient obtained for carbon dioxide at zero concentration was 2.4 x 10(-8) cm(2) s(-1), at 303 K. This parameter was also measured by using pulsed field gradient NMR finding that its value reaches a nearly constant value of (2.7 +/- 0.9) x 10(-8) cm(2) s(-1), at 298 K, for diffusion times greater than 20 ms. Both the diffusion and solubility coefficients were also computed by using simulation methods based on the transition states theory and the Widom method, respectively. The value obtained for the diffusion coefficient was 1.8 x 10(-8) cm(2) s(-1), at 303 K, which compares very favorably with the experimental measurements. The drop of the simulated solubility coefficient with increasing pressure is sharper than that of the experimental one, at low pressures, and similar, at high pressures.  相似文献   

7.
The equilibria and kinetics of substitution of the 5,6-dimethylbenzimidazole at the alpha site of beta-(N-methylimidazolyl)cobalamin by N-methylimidazole have been investigated, and the product, bis(N-methylimidazolyl)cobalamin, has been characterized by visible and 1H NMR spectroscopies. The equilibrium constant for (N-MeIm)Cbl+ + N-MeIm right harpoon over left harpoon (N-MeIm)2Cbl+ was determined by 1H NMR spectroscopy (9.6 +/- 0.1 M(-1), 25.0 degrees C, I = 1.5 M (NaClO4)). The observed rate constant for this reaction exhibits an unusual inverse dependence on N-methylimidazole concentration, and it is proposed that substitution occurs via a base-off solvent-bound intermediate. Activation parameters typical for a dissociative ligand substitution mechanism are reported at two different N-MeImT concentrations, 5.00 x 10(-3) M (DeltaH++ = 99 +/- 2 kJ x mol(-1), DeltaS++ = 39 +/- 5 J x mol(-1) x K(-1), DeltaV++ = 15.0 +/- 0.7 cm3 x mol(-1), and 1.00 M (DeltaH++ = 109.4 +/- 0.8 kJ x mol(-1), DeltaS++ = 70 +/- 3 J x mol(-1) x K(-1), DeltaV++ = 16.8 +/- 1.1 cm3 x mol(-1)). According to the proposed mechanism, these parameters correspond to the equation of (N-MeIm)2Cbl+ and the ring-opening reaction of the alpha-DMBI of (N-MeIm)Cbl+ to give the solvent-bound intermediate in both cases, respectively.  相似文献   

8.
The translational diffusion coefficient of an integral membrane protein/surfactant complex has been measured using a novel pulsed field gradient NMR method. In this new approach, the information about the localization of the molecules is temporarily stored in the form of longitudinal magnetization of isotopes with long spin-lattice relaxation times. This allows one to increase the duration of the diffusion interval by about 1 order of magnitude. Unlike standard proton NMR methods using pulsed field gradients and stimulated echoes, the new method can be applied to macromolecular assemblies with diffusion coefficients well below 10(-10) m(2) s(-1), corresponding to masses in excess of 25 kDa in aqueous solution at room temperature. The method was illustrated by application to a water-soluble complex of tOmpA, the hydrophobic transmembrane domain of bacterial outer membrane protein A, with the detergent octyl-tetraoxyethylene (C(8)E(4); overall mass of complex approximately 45 kDa). The diffusion coefficient was found to be D = (4.99 +/- 0.07) x 10(-11) m(2) s(-1), consistent with measurements by size exclusion chromatography and by ultracentrifugation. The method has also been applied to a solution of recombinant human tRNA(3)(Lys), which has a molecular mass of 24 kDa, and the diffusion coefficient D = (1.05 +/- 0.015) x 10(-10) m(2) s(-1).  相似文献   

9.
The lability and structural dynamics of [Fe(II)(edta)(H(2)O)](2-) (edta = ethylenediaminetetraacetate) in aqueous solution strongly depend on solvent interactions. To study the solution structure and water-exchange mechanism, (1)H, (13)C, and (17)O NMR techniques were applied. The water-exchange reaction was studied through the paramagnetic effect of the complex on the relaxation rate of the (17)O nucleus of the bulk water. In addition to variable-temperature experiments, high-pressure NMR techniques were applied to elucidate the intimate nature of the water-exchange mechanism. The water molecule in the seventh coordination site of the edta complex is strongly labilized, as shown by the water-exchange rate constant of (2.7 +/- 0.1) x 106 s(-1) at 298.2 K and ambient pressure. The activation parameters DeltaH(not equal), DeltaS(not equal), and DeltaV(not equal) were found to be 43.2 +/- 0.5 kJ mol(-1), +23 +/- 2 J K(-1) mol(-1), and +8.6 +/- 0.4 cm(3) mol(-1), respectively, in line with a dissociatively activated interchange (Id) mechanism. The scalar coupling constant (A/h) for the Fe(II)-O interaction was found to be 10.4 MHz, slightly larger than the value A/h = 9.4 MHz for this interaction in the hexa-aqua Fe(II) complex. The solution structure and dynamics of [Fe(II)(edta)(H(2)O)](2-) were clarified by (1)H and (13)C NMR experiments. The complex undergoes a Delta,Lambda-isomerization process with interconversion of in-plane (IP) and out-of-plane (OP) positions. Acetate scrambling was also found in an NMR study of the corresponding NO complex, [Fe(III)(edta)(NO(-))](2-).  相似文献   

10.
We report the first direct measurement of CO diffusion on nanoparticle Pt electrocatalysts at the solid/liquid interface, carried out using 13C nuclear magnetic resonance (NMR) with a spin-labeling pulse sequence. Diffusion parameters were measured in the temperature range of 253-293 K for CO adsorbed on commercial Pt-black under saturation coverage. 2H NMR of the same system indicates that the electrolyte remains in the liquid state at temperatures where the CO diffusion experiments were performed. The CO diffusion parameters follow typical Arrhenius behavior with an activation energy of 6.0 +/- 0.4 kcal/mol and a pre-exponential factor of (1.1 +/- 0.6) x 10-8 cm2/s. Exchange between different CO populations, driven by a chemical potential gradient, is suggested to be the main mechanism for CO diffusion. The presence of the electrolyte medium considerably slows down the diffusion of CO as compared to that seen on surfaces of bulk metals under UHV conditions. This work opens up a new approach to the study of surface diffusion of adsorbed molecules on nanoparticle electrode catalysts, including the possibility of correlating diffusion parameters to catalytic activity in real world applications of broad general interest.  相似文献   

11.
We present a new method to measure absolute diffusion coefficients at nanomolar concentrations with high precision. Based on a modified fluorescence correlation spectroscopy (FCS)-setup, this method is improved by introducing an external ruler for measuring the diffusion time by generating two laterally shifted and overlapping laser foci at a fixed and known distance. Data fitting is facilitated by a new two-parameter model to describe the molecule detection function (MDF). We present a recorded MDF and show the excellent agreement with the fitting model. We measure the diffusion coefficient of the red fluorescent dye Atto655 under various conditions and compare these values with a value achieved by gradient pulsed field NMR (GPF NMR). From these measurements we conclude, that the new measurement scheme is robust against optical and photophysical artefacts which are inherent to standard FCS. With two-focus-FCS, the diffusion coefficient of 4.26 x 10(-6) cm2s(-1) for Atto655 in water at 25 degrees C compares well with the GPF NMR value of 4.28 x 10(-6) cm2s(-1).  相似文献   

12.
Proton-detected NMR diffusion and (31)P NMR chemical shifts/bandwidths measurements were used to investigate a series of liposomal formulations where size and PEGylation extent need to be controlled for ultrasound mediated drug release. The width of the (31)P line is sensitive to aggregate size and shape and self-diffusion (1)H NMR conveys information about diffusional motion, size, and PEGylation extent. Measurements were performed on the formulations at their original pH, osmolality, and lipid concentration. These contained variable amounts of PEGylated phospholipid (herein referred to as PEG-lipid) and cholesterol. At high levels of PEG-lipid (11.5 and 15 mol%) the self-diffusion (1)H NMR revealed the coexistence of two entities with distinct diffusion coefficients: micelles (1.3 to 3x10(-11) m(2)/s) and liposomes (approximately 5x10(-12) m(2)/s). The (31)P spectra showed a broad liposome signal and two distinct narrow lines that were unaffected by temperature. The narrow lines arise from mixed micelles comprising both PEG-lipids and phospholipids. The echo decay in the diffusion experiments could be described as a sum of exponentials revealing that the exchange of PEG-lipid between liposomes and micellar aggregates is slower than the experimental observation time. For low amounts of PEG-lipid (1 and 4.5 mol%) the (31)P spectra consisted of a broad signal typically obtained for liposomes and the diffusion data were best described by a single exponential decay attributed solely to liposomes. For intermediate amounts of PEG-lipid (8 mol%), micellization started to occur and the diffusion data could no longer be fitted to a single or bi-exponential decay. Instead, the data were best described by a log-normal distribution of diffusion coefficients. The most efficient PEG-lipid incorporation in liposomes (about 8 mol%) was achieved for lower molecular weight PEG (2000 Da vs 5000 Da) and when the PEG-lipid acyl chain length matched the acyl chain length of the liposomal core phospholipid. Simultaneously to the PEGylation extent, self-diffusion (1)H NMR provides information about the size of micelles and liposomes. The size of the micellar aggregates decreased as the PEG-lipid content was increased while the liposome size remained invariant.  相似文献   

13.
We describe the dynamic behavior of a 1-stearoyl-2-oleoyl-phosphatidylethanolamine (SOPE) bilayer from a 20 ns molecular dynamics simulation. The dynamics of individual molecules are characterized in terms of (2)H spin-lattice relaxation rates, nuclear overhauser enhancement spectroscopy (NOESY) cross-relaxation rates, and lateral diffusion coefficients. Additionally, we describe the dynamics of hydrogen bonding through an analysis of hydrogen bond lifetimes and the time evolution of clusters of hydrogen bonded lipids. The simulated trajectory is shown to be consistent with experimental measures of internal, intermolecular, and diffusive motion. Consistent with our analysis of SOPE structure in the companion paper, we see hydrogen bonding dominating the dynamics of the interface region. Comparison of (2)H T(1) relaxation rates for chain methylene segments in phosphatidylcholine and phosphatidylethanolamine bilayers indicates that slower motion resulting from hydrogen bonding extends at least three carbons into the hydrophobic core. NOESY cross-relaxation rates compare well with experimental values, indicating the observed hydrogen bonding dynamics are realistic. Calculated lateral diffusion rates (4 +/ -1 x 10(-8) cm(2)s) are comparable, though somewhat lower than, those determined by pulsed field gradient NMR methods.  相似文献   

14.
EPR study of Mn2+ doped ammonium tartrate single crystals is carried out at room temperature. The spin Hamiltonian parameters are: gx=1.9225+/-0.0002, gy=1.9554+/-0.0002, gz=2.1258+/-0.0002, A=(78+/-2) x 10(-4) cm(-1), B=(75+/-2) x 10(-4) cm(-1), D=(191+/-2) x 10(-4) cm(-1), E=(61+/-2) x 10(-4) cm(-1) and a=(22+/-1) x 10(-4) cm(-1) for site I and gx=1.9235+/-0.0002, gy=1.9574+/-0.0002, gz=2.0664+/-0.0002, A=(78+/-2) x 10(-4) cm(-1), B=(75+/-2) x 10(-4) cm(-1), D=(180+/-2) x 10(-4) cm(-1), E=(57+/-2) x 10(-4) cm(-1) and a=(22+/-1) x 10(-4) cm(-1) for site II, respectively. The observed optical bands are fitted with inter-electronic repulsion parameters (B and C), crystal field parameter (Dq) and Trees correction (alpha) and the values found are B=752, C=2438, Dq=765 and alpha=76 cm(-1). The data obtained are further used to discuss the surrounding crystal field and the nature of metal-ligand bonding in the crystal.  相似文献   

15.
The dissociative recombination of OPCl+ and OPCl2+ has been studied at the storage ring CRYRING. The rate constants as a function of electron temperature have been derived to be 7.63 x 10(-7)(Te/300)(-0.89) and >1.2 x 10(-6)(Te/300)(-1.22) cm3s(-1), respectively. The lower limit quoted for the latter rate constant reflects the experimental inability to detect all of the reaction products. The branching fractions from the reaction have been measured for OPCl+ at approximately 0 eV interaction energy and are determined to be N(O+P+Cl)=(16+/-7)%, N(O+PCl)=(16+/-3)% and N(OP+Cl)=(68+/-5)%. These values have been obtained assuming that the rearrangement channel forming P+ClO is negligible, and ab initio calculations using GAUSSIAN03 are presented for the ion structures and energetics to support such an assumption. Finally, the limitations to using heavy ion storage rings such as CRYRING for studies into the dissociative recombination of large singly charged molecular ions are discussed.  相似文献   

16.
A novel oxonitridophosphate, Ba(19)P(36)O(6+x)N(66-x)Cl(8+x) (x ≈ 4.54), has been synthesized by heating a multicomponent reactant mixture consisting of phosphoryl triamide OP(NH(2))(3), thiophosphoryl triamide SP(NH(2))(3), BaS, and NH(4)Cl enclosed in an evacuated and sealed silica glass ampule up to 750 °C. Despite the presence of side phases, the crystal structure was elucidated ab initio from high-resolution synchrotron powder diffraction data (λ = 39.998 pm) applying the charge flipping algorithm supported by independent symmetry information derived from electron diffraction (ED) and scanning transmission electron microscopy (STEM). The compound crystallizes in the cubic space group Fm ?3c (no. 226) with a = 2685.41(3) pm and Z = 8. As confirmed by Rietveld refinement, the structure comprises all-side vertex sharing P(O,N)(4) tetrahedra forming slightly distorted 3(8)4(6)8(12) cages representing a novel composite building unit (CBU). Interlinked through their 4-rings and additional 3-rings, the cages build up a 3D network with a framework density FD = 14.87 T/1000 ?(3) and a 3D 8-ring channel system. Ba(2+) and Cl(-) as extra-framework ions are located within the cages and channels of the framework. The structural model is corroborated by (31)P double-quantum (DQ) /single-quantum (SQ) and triple-quantum (TQ) /single-quantum (SQ) 2D correlation MAS NMR spectroscopy. According to (31)P{(1)H} C-REDOR NMR measurements, the H content is less than one H atom per unit cell.  相似文献   

17.
ESR study of Mn(2+)-doped sodium hydrogen orthophosphate dihydrate (SHOD) single crystals is done at room temperature. The Mn(2+) spin-Hamiltonian parameters have been evaluated employing a large number of resonant line positions observed for different orientations of the external magnetic field. The values of g, A, B, D, E and a are: 2.0042+/-0.0002, 86+/-2 x 10(-4)cm(-1), 83+/-2 x 10(-4)cm(-1), 238+/-2 x 10(-4)cm(-1), 76+/-2 x 10(-4)cm(-1), 13+/-1 x 10(-4)cm(-1) for site I and 2.0032+/-0.0002, 86+/-2 x 10(-4)cm(-1), 83+/-2 x 10(-4)cm(-1), 238+/-2 x 10(-4)cm(-1), 76+/-2 x 10(-4)cm(-1), 13+/-1 x 10(-4)cm(-1) for site II, respectively. The optical absorption study of the crystal is also done. The observed bands are assigned as transitions from the (6)A(1g)(S) ground state to various excited quartet levels of a Mn(2+) ion in a cubic crystalline field. These bands are fitted with four parameters B, C, D(q) and alpha and the values found for the parameters are B=777 cm(-1), C=3073 cm(-1), D(q)=755 cm(-1), and alpha=76 cm(-1). On the basis of the data obtained the surrounding crystalline field and the nature of metal-ligand bonding are discussed.  相似文献   

18.
Solid state NMR spectroscopy and gauge including atomic orbital (GIAO) theoretical calculations were employed to establish structural restraints (ionization, hydrogen bonding, spatial arrangement) for O-phosphorylated l-threonine derivatives in different ionization states and hydrogen bonding strengths. These structural restraints are invaluable in molecular modeling and docking procedures for biological species containing phosphoryl groups. Both the experimental and the GIAO approach show that 31P delta ii chemical shift tensor parameters are very sensitive to the ionization state. The negative values found for the skew kappa are typical for -2 phosphates. The distinct span Omega values reflect the change of strength of hydrogen bonding. For species in the -1 ionization state, engaged in very strong hydrogen bonds, Omega is smaller than for a phosphate group involved in weak hydrogen bonding. For phosphates in the -2 ionization state, Omega is significantly smaller compared to -1 species, although the kappa for -1 samples never reaches negative values. For -1 phosphate residues, in the case when 1H one pulse and/or combined rotation and multiple pulse spectroscopy (CRAMPS) sequences fail and assignment of proton chemical shift is ambiguous, a combination of 1H-(13)C and 1H-(31)P 2D heteronuclear correlation (HETCOR) correlations is found to be an excellent tool for the elucidation of 1H isotropic chemical shifts. In addition, a 2D strategy using 1H-(1)H double quantum filter (DQF) correlations [a back-to-back (BABA) sequence in this work] is useful for analyzing the topology of hydrogen bonding. In the case of a multicenter phosphorus domain, 2D 31P-(31)P proton driven spin diffusion experiments give information about the spatial arrangement of the phosphate residues.  相似文献   

19.
Surface partitioning of 2,2,6,6-tetramethyl-1-piperidynyloxy radical (Tempo) to the air/water interface follows a Langmuir isotherm. The partition constant was obtained by the surface tension measurements in the concentration range of 1.0 x 10(-4)-2.4 x 10(-3) M yielding K = 640 +/- 99 M(-1). The lateral mobility of Tempo at the air/water interface was measured electrochemically in the surface concentration range of 2.0 x 10(-11)-1.4 x 10(-10) mol/cm2, corresponding to ca. 7.3-50% full monolayer coverage. The measurements employed cyclic voltammetry with line microelectrodes touching the air/water interface. The Tempo lateral diffusion constant of (1.5 +/- 0.7) x 10(-4) cm2/s is independent of surface concentration below 4.0 x 10(-11) mol/cm2. The extent of Tempo water interactions was assessed by the electronic structure calculations. These calculations showed that, at most, two water molecules can hydrogen bond with the oxygen atom of the nitroxyl group of Tempo, and that a single water molecule forms a hydrogen bond that is ca. 30% stronger than the H2O-H2O hydrogen bond. These calculations led to a postulate that Tempo diffuses along the interface largely unimmersed, and that it is coupled to the interfacial water via hydrogen bonding with H2O. In view of this postulate, the viscosity of the aqueous liquid/vapor interfacial region obtained by interpreting the Tempo diffusion constant in the low concentration region is as much as 4 times smaller than that of bulk liquid water.  相似文献   

20.
The ESR study of Cu(2+) doped calcium malonate dihydrate has been done at room temperature. Four magnetically in-equivalent sites for Cu(2+) have been observed. The spin-Hamiltonian parameters evaluated with the fitting of spectra to rhombic symmetry crystalline field are for Cu(2+) site (I): g(x)=2.0963+/-0.0002, g(y)=2.1316+/-0.0002, g(z)=2.4137+/-0.0002, A(x)=(32+/-2)x10(-4)cm(-1), A(y)=(34+/-2)x10(-4)cm(-1), A(z)=(49+/-2)x10(-4)cm(-1), for site (II): g(x)=2.0668+/-0.0002, g(y)=2.0800+/-0.0002, g(z)=2.3561+/-0.0002, A(x)=(34+/-2)x10(-4)cm(-1), A(y)=(36+/-2)x10(-4)cm(-1), A(z)=(51+/-2)x10(-4)cm(-1), for site (III): g(x)=2.0438+/-0.0002, g(y)=2.0623+/-0.0002, g(z)=2.2821+/-0.0002, A(x)=(34+/-2)x10(-4)cm(-1), A(y)=(36+/-2)x10(-4)cm(-1), A(z)=(53+/-2)x10(-4)cm(-1), and for site (IV): g(x)=2.0063+/-0.0002, g(y)=2.0241+/-0.0002, g(z)=2.2357+/-0.0002, A(x)=(35+/-2)x10(-4)cm(-1), A(y)=(37+/-2)x10(-4)cm(-1), A(z)=(54+/-2)x10(-4)cm(-1). The ground state wave function of Cu(2+) has also been determined. The g-anisotropy has been estimated and compared with the experimental value. Further with the help of optical study the nature of bonding of metal ion with different ligands in the complex has been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号