首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 34 毫秒
1.

The present study pertained to biosynthesis, characterization and biomedical application (larvicidal, histopathology, antibacterial, antioxidant and anticancer activity) of Zinc oxide nanoparticles (ZnONPs) from Pleurotus djamor. The synthesized NPs were characterized using spectral and microscopic analyses and further confirmed by UV–Visible spectrophotometer with apeak of 350 nm. The ZnONPs showed strong antioxidant property (DPPH, H2O2 and ABTS+ radical assay) and expressed good larval toxicity against Ae. aegypti and Cx. quinquefasciatus (IVth instar larvae) with the least LC50 and LC90 values (10.1, 25.6 and 14.4, 31.7 mg/l) after 24 h treatment, respectively. We noticed the morphological changes (damaged anal papillae area and the cuticle layers) in the treated larvae. For the antibacterial assay, the highest growth inhibition zone was recorded in C. diphteriae (28.6?±?0.3 mm), followed by P. fluorescens (27?±?0.5 mm) and S. aureus (26.6?±?1.5 mm). The in vitro cytotoxicity assay depicted a significant level of cytotoxic effects (LC50 values 42.26 μg/ml) of ZnONPs against the A549 lung cancer cells, even at low dose. The overall findings of the study suggest that P. djamor had the ability for the biosynthesis of ZnONPs and could act as an alternative biomedical agent for future therapeutic applications in medical avenues.

  相似文献   

2.
Here, a green method is described for the biosynthesis of Ag nanoparticles (Ag NPs) using aqueous extracts of the leaf of Salvia leriifolia as reducing and stabilizing agent. Various techniques such as scanning electron microscopy (SEM), atomic force microscopy (AFM), transmission electron microscopy (TEM) and X‐ray diffraction (XRD) were employed for the characterization of the structure and morphology of bio‐synthesized AgNPs. The results reveal that AgNPs synthesized with uniform spherical morphology and average diameters of 27 nm. The AgNPs as a green and efficient heterogeneous catalyst presented superior antibacterial activity. Direct electrochemistry studies of the synthesized AgNPs confirmed that nanoparticles retained their direct electrochemical activity. This is mainly attributed to the proper biosynthesis process, the large specific surface area and the good conductivity of the synthesized nanoparticles. Hence, the present synthesized AgNPs displayed good electrocatalytic activity to the reduction of nitrite ions. The proposed method is highly recommended as a novel platform for the development of electrochemical sensors which can further expand the applications of AgNPs. Antibacterial activity of the synthesized AgNPs was evaluated against nine microorganisms. AgNPs prevented the growth of all selected bacteria. The nanoparticles inhibited the growth of Pseudomonas aeruginosa, Klebsiella pneumonia, Staphylococcus coagulase, Acinetobacter baumannii, and Streptococcus pneumonia more than antibiotic of vancomycin, however, the ability of AgNPs against Echerishia coli and Serratia marcescens was less than the antibiotic. On the other hand AgNPs were active against Citrobacter frurdii, while the antibiotic was inactive.  相似文献   

3.
Malvaceae and Brassicaceae family crops are economically important; however, their production has been markedly decreased in recent years due to various plant pests. Hence, the search for novel classes of efficient biological approaches continues due to unavailability of precise pesticides. The present study was designed to synthesize, characterize and evaluate the efficacy of silver nanoparticles (AgNPs) obtained using stem extract of Gossypium hirsutum (cotton plant) against plant pathogens Xanthomonas axonopodis pv. malvacearum and Xanthomonas campestris pv. campestris. Biosynthesized AgNPs were characterized using UV–visible spectrophotometry, Dynamic Light Scattering, Scanning Electron Microscopy combined with energy‐dispersive X‐ray analysis and Fourier transform infrared spectroscopy. The synthesized AgNPs were spherical in shape with size ranging from 20 to 100 nm. The characterized AgNPs were investigated for their efficacy against bacterial plant pathogens using the paper disc method. In vitro studies with two concentrations of AgNPs (50 and 100 μg mL?1) showed zone of inhibition 11.0 ± 1.0 and 12.3 ± 0.5 mm for X. axonopodis pv. malvacearum and 9.7 ± 0.6 and 15.33 ± 1.0 mm for X. campestris pv. campestris. Furthermore, the AgNPs exhibited strong antioxidant activity, and a phytotoxicity study on Vigna unguiculata (cowpea plant) showed no toxicity. Overall, the findings suggest that G. hirsutum stem extract could be efficiently used in the synthesis of AgNPs and showed antimicrobial activity against plant pathogens. Hence, the synthesized nanoparticles could be used to combat plant pathogens in the agriculture sector.  相似文献   

4.
Abstract

Essential oils from aerial parts of Senecio nutans, Senecio viridis, Tagetes terniflora and Aloysia gratissima were analysed by GC-MS and their antifungal activities were assayed on toxigenic Fusarium and Aspergillus species. Sabinene (27.6?±?0.1%), α-phellandrene (15.7?±?0.3%), o-cymene (9.6?±?0.2%) and β-pinene (6.1?±?0.2%) in S. nutans, 9,10-dehydrofukinone (92.7?±?0.2%) in S. viridis, β-thujone (36.1?±?0.1%), α-thujone (32.2?±?0.2%), 1,8-cineol (10.7?±?0.1%) and sabinene (6.2?±?0.2%) in A. gratissima, and cis-tagetone (33.6?±?0.2%), cis-β-ocimene (17.1?±?0.2%), trans-tagetone (17.0?±?0.1%), cis-ocimenone (8.0?±?0.2%) and trans-ocimenone (8.2?±?0.1%) in T. terniflora. The oils showed moderate antifungal activity (1.2?mg/mL?>?MIC >0.6?mg/mL) on the Fusarium species and a weak effect on Aspergillus species. The antifungal activity was associated on F. verticillioides to the high content of cis-tagetone, trans-tagetone, cis-β-ocimene, cis-ocimenone, trans-ocimenone and on F. graminearum due to the total content of oxygenated sesquiterpenes and 9,10- dehydrofukinone. The oil of S. viridis synergized the effect of fungicides and food preservatives on F. verticillioides.

  相似文献   

5.
The self‐assembly of an amphiphilic peptide molecule to form nanofibers facilitated by Ag+ ions was investigated. Ultrafine AgNPs (NPs=nanoparticles) with an average size of 1.67 nm were synthesized in situ along the fibers due to the weak reducibility of the ‐SH group on the peptide molecule. By adding NaBH4 to the peptide solution, ultrafine AgNPs and AuNPs were synthesized with an average size of 1.35 and 1.18 nm, respectively. The AuNPs, AgNPs, and AgNPs/nanofibers all exhibited excellent catalytic activity toward the reduction of 4‐nitrophenol, with turnover frequency (TOF) values of 720, 188, and 96 h?1, respectively. Three dyes were selected for catalytic degradation by the prepared nanoparticles and the nanoparticles showed selective catalysis activity toward the different dyes. It was a surprising discovery that the ultrafine AuNPs in this work had an extremely high catalytic activity toward methylene blue, with a reaction rate constant of 0.21 s?1 and a TOF value of 1899 h?1.  相似文献   

6.

In recent years, progress of biological synthesis of nanoparticles is inevitable due to its important applications. In this research, a new and simple method for the synthesis of AgNPs from plant extracts is presented. The extract from shoots of the plant Tribulus terrestris L. was mixed with AgNO3 with the aim of biologically synthesizing AgNPs. The biomolecules existing in the extract were accountable for the fast reduction of silver ions (Ag+) to AgNPs. Characterization of biosynthesized AgNPs was performed by UV–Vis, TEM, DLS, and XRD. The AgNPs exhibit a strong peak at 434 nm, and sphere-shaped AgNPs were found to be ~?25 nm. The biosynthesized silver nanoparticles have demonstrated high antibacterial effect against pathogenic bacteria (i.e., Staphylococcus aureus, Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa). In addition, the in vitro cytotoxicity effect of biosynthesized silver nanoparticles was also investigated and was detected to be up to 15.62 μg/mL in the treated Neuro2A cells. The plant-mediated biosynthesis of AgNPs has comparatively rapid, eco-friendly, inexpensive and wide-ranging application in modern medicine and the food industry.

  相似文献   

7.

The present work presented a synthesis of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) using the aqueous extract of waste banana stem (WBS), Musa paradisiaca Linn. The reduction and formation of MNPs have been characterized by several analysis techniques such as X-ray diffraction (XRD), Fourier transmission infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM). The techniques showed that average particle size of WBS-AgNPs and WBS-AuNPs in crystalline nature was in ranges of 7–13 nm and 11–14 nm, respectively. The synthesized nanoparticles were used to evaluate antibacterial activity and catalysis. The WBS-AgNPs showed strong antibacterial activity against B. subtilis and E. coli. The largest zone of inhibition against B. subtilis (14.2 mm) and E. coli (9.3 mm) was found at concentrations of 4.0 ppm and 2.0 ppm, respectively. The excellent catalytic application of both the nanoparticles for the reduction of 4-nitrophenol was confirmed via study on their kinetics. The normalized kinetic constants (knor) of WBS-AgNPs and WBS-AuNPs were found to be 1.72?×?10–3 s?1 mg?1 and 2.45?×?10–3 s?1 mg?1, respectively.

  相似文献   

8.
In this study, Bi2S3@BSA–Bio–MTX nanoparticles (NPs) were synthesized for the first time by bovine serum albumin (BSA)-mediated biomineralization (Bi2S3@BSA NPs) followed by covalent bonding of biotin (Bio) and methotrexate (MTX) on the surface of the Bi2S3@BSA NPs via carbodiimide chemistry. The synthesized NPs were globular and exhibited uniform morphology with a hydrodynamic diameter of 107.6 ± 6.81 nm (mean ± standard deviation) and zeta potential of −20.9 ± 2.18 mV. Drug release from Bi2S3@BSA–Bio–MTX NPs indicated an enzyme-dependent release pattern. The in vitro biocompatibility of NPs was confirmed by investigating their cytotoxicity against the HEK-293 cell line and hemolysis assay test, whereas the in vivo biocompatibility of the NPs was evaluated and confirmed by the lethal dose 50 (LD50) test. To evaluate the in vitro anticancer activity of the functionalized NPs and MTX, their cytotoxic effects was assessed against 4T1 cancer cells by 5-dimethylthiazol-z-yl)-2,5-diphenyltetrazolium bromide (MTT) assay with and without X-ray radiation. Results showed that Bi2S3@BSA–Bio–MTX NPs have excellent anticancer activity, especially following X-ray radiation.  相似文献   

9.
In order to overcome the limitations of conventional therapeutic systems in the treatment of cancer, nanoparticles (NPs) have been rapidly produced and developed as a separate treatment method for control of cancer. Synthesis of nanoparticles using plant-based materials (green synthesis), due to the easy and cost-effective synthesis, production of non-toxic, sustainable and environmentally friendly products, can be considered the most appropriate method for preparation of NPs. In this study, after synthesis of Bi2O3 NPs using Ginger (Zingiber officinale) root (rhizome) extract, the synthesized NPs were characterized and their potential application as selective anticancer agents against HCT116 colorectal cancer cells was evaluated through regulation of PI3K/AKT/mTOR signaling pathway, whereas the human kidney (HK-2) cells were used as normal cells. FTIR analysis showed a band at 673 cm?1 attributed to Bi-O vibration with a fingerprint region at 1291 cm?1 demonstrating the attachment of the organic molecules to the synthesized Bi2O3 NPs. UV–visible study showed a λmax of around 268 nm, whereas XRD analysis showed eight clear peaks, demonetizing the crystalline phase of synthesized Bi2O3 NPs. TEM analysis showed that spherical-shaped Bi2O3 NPs have a size range of 20–50 nm with a man size of around 35 nm. Finally, DLS analysis determined that Bi2O3 NPs have a hydrodynamic size of about 71.19 nm (PDI of 0.179) and a zeta potential value of ?44.39 mV, revealing the good colloidal stability of NPs. Cellular assays (MTT, LDH, flow cytometry, and RT-qPCR) showed that synthesized Bi2O3 NPs selectively induced anticancer effects against HCT116 colorectal cancer cells through membrane leakage, generation of ROS, induction of apoptosis via dysregulation of Bax, Bcl-2 and caspase-3 at mRNA level mediated via regulation of PI3K/AKT/mTOR signaling pathway. In conclusion, it may be suggested that the presence study could provide useful information for the potential anticancer effects mediated by synthesized Bi2O3 NPs in vitro, although further studies, including in vivo studies and clinical trials, are needed to support our findings.  相似文献   

10.
The emergence of multi‐drug resistant (MDR) bacteria and dynamic pattern of infectious diseases demand to develop alternative and more effective therapeutic strategies. Silver nanoparticles (AgNPs) are among the most widely commercialized engineered nanomaterials, because of their unique properties and increasing use for various applications in nanomedicine. This study for the first time aimed to evaluate the antibacterial and antibiofilm activities of newly synthesized nanochelating based AgNPs against several Gram‐positive and ‐negative nosocomial pathogens. Nanochelating technology was used to design and synthesize the AgNPs. The cytotoxicity was tested in human cell line using the MTT assay. AgNPs minimal inhibitory concentration (MIC) was determined by standard broth microdilution. Antibiofilm activity was assayed by a microtiter‐plate screening method. The two synthesized AgNPs including AgNPs (A) with the size of about 20‐25 nm, and AgNPs (B) with 30‐35 nm were tested against Staphylococcus aureus, Staphylococcus epidermidis, Acinetobacter baumannii, and Pseudomonas aeruginosa. AgNPs exhibited higher antibacterial activity against Gram‐positive strains. AgNPs were found to significantly inhibit the biofilm formation of tested strains in concentration 0.01 to 10 mg/mL. AgNPs (A) showed significant effective antibiofilm activity compared to AgNPs (B). In summary, our results showed the promising antibacterial and antibiofilm activity of our new nanochelating based synthesized AgNPs against several nosocomial pathogens.  相似文献   

11.
Free radicals, mostly consist of reactive oxygen species, are generated in human body by several exogenous and endogenous systems. Overproduction of free radicals is known to cause several degenerative disorders including cancer. The aim of this study is to synthesize silver nanoparticles (AgNPs) using root extract of Reynoutria japonica and to investigate its antioxidant and cytotoxic potential. AgNPs were synthesized by green approach and subsequently characterized using UV–vis spectroscopy, SEM, TEM, FTIR, XRD, EDS and DLS. The antioxidant activity was investigated using DPPH, FRAP, H2O2, and ABT?+ radical scavenging assays while the cytotoxic effect was assessed using different human cancer cell lines including lung (A549), liver (Hep-G2) and breast (MDA-MB-231) by MTS assay. Moreover, the specificity of NPs was assessed against two normal human cell lines e.g. alveolar and renal primary epithelial cells (HPAEpiC and HRPTEpiC). The UV–vis spectra confirmed the synthesis of AgNPs by producing a characteristic peak at 410 nm. Further analysis confirmed that AgNPs were crystalline in nature, predominantly spherical in shape, with an average width and area of 17.34 nm and 164.46 nm2, respectively. DLS analysis revealed that NPs possess a high negative zeta potential value (?28.5 mV), thus facilitating its electrostatic stabilization. AgNPs showed dose dependent antioxidant activity against DPPH, FRAP, H2O2 and ABTS with IC50 values 19.25, 22.45, 24.20 and 18.88 µg/ml, respectively. The AgNPs depicted significant cytotoxic effects against A549, Hep-G2 and MDA-MB-231 cell lines with IC50 values of 4.5, 5.1 and 3.46 µg/ml, respectively. Moreover, the NPs exhibited highest selectivity index (>2.0) for A549, Hep-G2 and MDA-MB-231, confirming its specificity towards cancer cell lines. In conclusion, AgNPs prepared from root extract of R. japonica possess strong antioxidant and cytotoxic potential which suggests that they should be investigated further in order to develop safe and effective antioxidant and/or cytotoxic formulations.  相似文献   

12.
ABSTRACT

The current study aims to assess the aqueous extract of Pinus wallichiana stem for the synthesis of small spherical-shaped (10–30?nm) silver nanoparticles (AgNPs) and their in-vitro and in-vivo biomedical applications. The biosynthesized AgNPs were nonmutagenic and safe at all test doses as per Ames and acute toxicity assay (20, 40, 60, and 80?mg/kg). The percent writhing inhibitory effect generated by AgNPs was 42.51, 50.84, and 59.06 at test doses of 10, 20, and 30?mg/kg, respectively. The percent decreased in gastrointestinal tract motility observed was 41.34%, 32.69%, and 28.48% at 10, 20, and 30?mg/kg, respectively. They also showed a significant antipyretic effect after 1, 2, and 3?h in comparison to normal saline. The AgNPs of P. wallichiana showed good antibacterial activity against Acinetobacter baumannii (60% with MIC50?=?2.36?mg/ml and MBC?=?5.0?mg/ml). These nanoparticles also possessed good antioxidant activity of 61.77?±?0.828% and 70.25?±?0.56% at 400 and 500?µg/ml, respectively and lack phytoagglutinin potential. Because of their high potency as biomedical agents, these nanoparticles can be a good alternative to the currently available drugs and approaches.  相似文献   

13.
Silver nanoparticles (AgNPs) have attracted considerable attention owing to their unique biological applications. AgNPs synthesized by plant extract is considered as a convenient, efficient and eco-friendly material. In this work, the aqueous extract of Areca catechu L. nut (ACN) was used as the reducing and capping agents for one-pot synthesis of AgNPs, and their antioxidant and antibacterial activities were investigated. UV (Ultra Violet)-visible spectrum and dynamic light scattering (DLS) analysis revealed that the size of AgNPs was sensitive to the synthesis conditions. The synthesized AgNPs were composed of well-dispersed particles with an small size of about 10 nm under the optimal conditions (pH value of extract was 12.0; AgNO3 concentration was 1.0 mM; reaction time was 90 min). In addition, scanning electron microscope with energy dispersive X-ray (SEM-EDX), transmission electron microscopy (TEM) and X-ray diffraction (XRD) results further verified that the synthesized AgNPs had a stable and well-dispersed form (Zeta potential value of ?30.50 mV and polydispersity index of 0.328) and a regular spherical shape (average size of 15–20 nm). In addition, Fourier transform infrared spectrometry (FTIR) results revealed that phytochemical constituents in ACN aqueous extract accounted for Ag+ ion reduction, capping and stabilization of AgNPs. The possible reductants in the aqueous extract of Areca catechu L. nut were identified by high-performance liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (HPLC-ESI-qTOF/MS) method. More importantly, the synthesized AgNPs indicated excellent free radical scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH, IC50 = 11.75 ± 0.29 μg/mL) and 2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS+, IC50 = 44.85 ± 0.37 μg/mL), which were significant higher than that of ascorbic acid. Moreover, AgNPs exhibited an enhanced antibacterial activity against six selected common pathogens (especially Escherichia coli and Staphylococcus aureus) compared with AgNO3 solution. In a short, this study showed that the Areca catechu L. nut aqueous extract could be applied for eco-friendly synthesis of AgNPs.  相似文献   

14.
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15–55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.  相似文献   

15.
Magnetite nanoparticles are particularly attractive for drug delivery applications because of their size-dependent superparamagnetism, low toxicity, and biocompatibility with cells and tissues. Surface modification of iron oxide nanoparticles with biocompatible polymers is potentially beneficial to prepare biodegradable nanocomposite-based drug delivery agents for in vivo and in vitro applications. In the present study, the bare (10 nm) and polyethylene glycol (PEG)–(3-aminopropyl)triethoxysilane (APTES) (PA) modified (17 nm) superparamagnetic iron oxide nanoparticles (SPIO NPs) were synthesized by coprecipitation method. The anticancer drugs, doxorubicin (DOX) and paclitaxel (PTX), were separately encapsulated into the synthesized polymeric nanocomposites for localized targeting of human ovarian cancer in vitro. Surface morphology analysis by scanning electron microscopy showed a slight increase in particle size (27?±?0.7 and 30?±?0.45 nm) with drug loading capacities of 70 and 61.5 % and release capabilities of 90 and 93 % for the DOX- and PTX-AP-SPIO NPs, respectively (p?<?0.001). Ten milligrams/milliliter DOX- and PTX-loaded AP-SPIO NPs caused a significant amount of cytotoxicity and downregulation of antiapoptotic proteins, as compared with same amounts of free drugs (p?<?0.001). In vivo antiproliferative effect of present formulation on immunodeficient female Balb/c mice showed ovarian tumor shrinkage from 2,920 to 143 mm3 after 40 days. The present formulation of APTES–PEG-SPIO-based nanocomposite system of targeted drug delivery proved to be effective enough in order to treat deadly solid tumor of ovarian cancer in vitro and in vivo.  相似文献   

16.
The present study fabricates biogenic zinc oxide nanoparticles (ZnO NPs) with the aqueous leaf extract of Annona muricata (Am) plant collected from semi-evergreen forests of Odisha, India. The synthesized Am-ZnO NPs were physicochemically characterized. The ultraviolet/visible spectrum showed the maximum optical absorbance of Am-ZnO NPs at 355 nm. High-resolution transmission electron microscopy analysis presented the nearly spherical shape of Am-ZnO NPs with an average particle size of 80 nm. The net surface charge and hydrodynamic size of Am-ZnO NPs were measured to be ~?2.59 mV and ~417 nm, respectively. Am-ZnO NPs were found to be biocompatible and hemocompatible nature. Furthermore, Am-ZnO NPs displayed strong anticancer effects on both 2D and 3D tumor models. We observed a dose-dependent toxicity on both A549 and MOLT4 cells and observed a size reduction in the A549 tumor spheroids. Subsequently, we observed a depolarization in mitochondrial membrane potential of Am-ZnO NP–treated cancer cells leading to the apoptosis induction in cancer cells.  相似文献   

17.
In a biological process where the herbal tea (Stachys lavandulifolia) aqueous extract was applied as a capping and reducing agent, nanoparticles (NPs) of silver (Ag) were synthesized. These AgNPs were characterized using Fourier transform‐infrared spectroscopy, field emission‐scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, transmission electron microscopy and ultraviolet–visible spectroscopy. The synthesized AgNPs had great cell viability dose‐dependently [investigating the effect of the plant on human umbilical vein endothelial cell line] and indicated this method was non‐toxic. In this study, the 2,2‐diphenyl‐1‐picrylhydrazyl (DPPH) free radical scavenging test was carried out to examine antioxidant properties, which revealed similar antioxidant properties for AgNPs and butylated hydroxytoluene. Agar diffusion tests were applied to determine the antibacterial characteristics. The macro‐broth tube test was run to determine minimum inhibitory concentration. All data of antibacterial and cutaneous wound‐healing examinations were analyzed by SPSS 21 software (Duncan post hoc test). AgNPs showed higher antibacterial property than all standard antibiotics (p ≤ 0.01). Also, AgNPs prevented the growth of all bacteria at 2–8 mg/ml concentrations and destroyed them at 2–16 mg/ml concentrations (p ≤ 0.01). For the in vivo experiment, after creating the cutaneous wound, the rats were randomly divided into six groups: untreated control; treatment with Eucerin basal ointment; treatment with 3% tetracycline ointment; treatment with 0.2% AgNO3 ointment; treatment with 0.2% S. lavandulifolia ointment; and treatment with 0.2% AgNPs ointment. These groups were treated for 10 days. For histopathological and biochemical analysis of the healing trend, a 3 × 3‐cm section was prepared from all dermal thicknesses at day 10. Use of AgNPs ointment in the treatment groups substantially reduced (p ≤ 0.01) the wound area, total cells, neutrophil, macrophage and lymphocyte, and remarkably raised (p ≤ 0.01) the wound contracture, hydroxyl proline, hexosamine, hexuronic acid, fibrocyte and fibrocytes/fibroblast rate compared with other groups. Seemingly, AgNPs can be used as a medical supplement owing to their non‐cytotoxic, antioxidant, antibacterial and cutaneous wound‐healing properties.  相似文献   

18.
Green fabrication has become a safe approach for producing nanoparticles. Plant-based biogenic synthesis of silver nanoparticles (AgNPs) has emerged as a possible alternative to traditional chemical production. In this paper, we provide a low-cost, green synthesis of AgNPs utilizing using Kei-apple (Dovyalis caffra) fruit extract. Ultraviolet–visible (UV–Vis) spectroscopy, Fourier Transform Infrared (FTIR), Transmission Electron Microscopy (TEM), X-Ray Diffraction (XRD), Scanning-Electron Microscope (SEM), and Dynamic Light Scattering (DLS) analyses were used to characterize green produced AgNPs. The formation of AgNPs was shown to have a surface resonance peak of 415 nm in UV–visible spectra, and FTIR spectra verified the participation of biological molecules in Synthesis of AgNPs. The TEM revealed that the biosynthesized AgNPs were mostly spherical in form, with size range of 12–53 nm. XRD diffractogram was used to demonstrate the face cubic centre (fcc) character of AgNPs. Excellent anticancer activity of AgNPs was recorded where more than 80% of Prostate Cancer (PC-3) cell lines was inhibited by 100–150 µg/mL of AgNPs, while 38% only was recorded using AgNO3 and 55.62% was recorded D. caffra fruit extract at 150 µg/mL. Destructions of PC-3 cell was observed as a result of exposed to AgNPs, followed by D. caffra fruit extract, while minor alterations were recorded as exposed to AgNO3. The 2,2-Diphenyl-1-picrylhydrazyl (DPPH) scavenging using AgNPs was three fold using fruit extract at 100 µg/mL indicating good antioxidant activity. Excellent inhibitory activity of AgNPs was recorded against Bacillus subtilis, Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Candida albicans and Aspergillus fumigatus with inhibition diameter zone 28.22 ± 0.25 mm, 23.21 ± 0.35 mm, 27.25 ± 0.03 mm, 28.40 ± 0.15 mm, 29.23 ± 0.44 mm, and 9.52 ± 0.5 mm, respectively compared with AgNO3. D. caffra fruits considered a promising and safe source for fabrication of AgNPs with multi-biological functions.  相似文献   

19.
Currently, molecular mechanisms of multidrug ABC (ATP-binding cassette) membrane transporters remain elusive. In this study, we synthesized and characterized purified spherically shaped silver nanoparticles (Ag NPs) (11.8 ± 2.6 nm in diameter), which were stable (non-aggregation) in PBS buffer and inside single living cells. We used the size-dependent localized surface plasmon resonance (LSPR) spectra of single Ag NPs to determine their sizes and to probe the size-dependent transport kinetics of the ABC (BmrA, BmrA-EGFP) transporters in single living cells (Bacillus subtilis) in real time at nanometer resolution using dark-field optical microscopy and spectroscopy (DFOMS). The results show that the smaller NPs stayed longer inside the cells than larger NPs, suggesting size-dependent efflux kinetics of the membrane transporter. Notably, accumulation and efflux kinetics of intracellular NPs for single living cells depended upon the cellular expression level of BmrA, NP concentrations, and a pump inhibitor (25 μM, orthovanadate), suggesting that NPs are substrates of BmrA transporters and that passive diffusion driven by concentration gradients is the primary mechanism by which the NPs enter the cells. The accumulation and efflux kinetics of intracellular NPs for given cells are similar to those observed using a substrate (Hoechst dye) of BmrA, demonstrating that NPs are suitable probes for study of multidrug membrane transporters of single living cells in real-time. Unlike fluorescent probes, single Ag NPs exibit size-dependent LSPR spectra and superior photostability, enabling them to probe the size-dependent efflux kinetics of membrane transporters of single living cells in real-time for better understanding of multidrug resistance.  相似文献   

20.

α-Amylase and α-Glucosidase are important therapeutic targets for type II diabetes. The present focus of our study is to elucidate the hypoglycemic activity of novel compounds through in vitro and in silico studies. Here, we synthesized the nitro acridines (3a–3c), amino acridines (4a–4c), and nitro phenylquinoline (3d) and amino phenylquinoline (4d) using a multi-step reaction protocol in good yields. All the above derivatives were screened for molecular docking, α-Amylase and α-Glucosidase inhibitory activities utilizing acarbose as standard drug. In silico studies were performed to explore the binding ability of compounds with the active site of α-Amylase and α-Glucosidase enzymes. The in vitro antihyperglycemic report of 3c exhibits the maximum inhibitory activity with IC50 values of 200.61?±?9.71 μmol/mL and 197.76?±?8.22 μmol/mL against α-Amylase and α-Glucosidase, respectively. Similarly, the compound 3a exhibits IC50 values of 243.78?±?13.25 μmol/mL and 296.57?±?10.66 μmol/mL, and 4c exhibits IC50 values of 304.28?±?3.51 μmol/mL and 278.86?±?3.24 μmol/mL with a significant p?<?0.05 in both enzyme inhibitions. In addition, the presence of diverse functional moieties in synthesized compounds may provide a strong inhibitory action against the abovementioned enzymes compared with standard acarbose inhibition (IC50, 58.74?±?3.68 μmol/mL and 49.39?±?4.94 μmol/mL). Also, the docking studies provided an excellent support for our in vitro studies. The outcome of these studies recommends that the tested compounds might be treated as potential inhibitors for the starch hydrolyzing enzymes in type II diabetes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号