首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-amylase activity influences both flour fermentation process and the quality of the fermented products due to its ability of breaking starch into smaller units. The inhibition of cyclodextrins on α-amylase activity was investigated in this paper. Experiment results showed that hydrophobic cavity size was an intrinsic factor during the inhibition processing. Among three types of cyclodextrin (α-, β- and γ-), β-type exhibited the most significant inhibitory activity toward α-amylase. The optimal inhibitory parameters were indicated to be pH 5.9, concentration of β-cyclodextrins 1 mmol/L, reaction temperature 45 °C and reaction time 60 min. Results suggested that the endogenous fluorescence of α-amylase was inhibited by cyclodextrins. Circular dichroism spectrum indicated that the secondary structure of α-amylase, including α-helices, β-sheets and random coils, was changed by cyclodextrins. All the results in this paper aim to provide a further understanding for α-amylase in the industry application.  相似文献   

2.
Catalytic properties of superparamagnetic γ-ferric oxide nanoclusters, which are uniform in terms of size and magnetic properties were studied. The catalysts were supported on the activated silica gel matrix (AGM) prepared from the KSK-2 silica gel of globular structure and on the activated silica matrix (ASM) prepared from layered natural vermiculite. The clusters are active in some reactions of chloroolefin conversions: isomerization of dichlorobutenes and alkylation of benzene with allyl chloride. Their activity in these reactions is many times higher that of usual supported catalysts based on α-ferric oxide. Analysis of the Mössbauer spectra of the 2.5 wt.% Fe/AGM and 2.5 wt.%Fe/ASM samples before and after the reaction at T = 3–300 K shows that during the reaction some FeIII ions arranged in ~2–3-nm γ-Fe2O3 nanoclusters magnetically ordered at 6 K are reduced to form a high-spin FeII complex in the paramagnetic state. According to the macroscopic magnetization data (SQUID) of the initial clusters, curves with hysteresis are observed at 2 K in the plots of forward and backward magnetization, while the 2.5 wt.%Fe/ASM catalyst after the reaction at T = 2 K demonstrates a linear field dependence of the magnetization passing through the coordinate origin. Analysis of the Mössbauer spectra and magnetic properties suggests that during the catalytic reaction the FeIII ions in the γ-Fe2O3 nanoclusters interact with chloroolefin with the allylic structure to be partially reduced to the FeII ions that are bound in a complex containing chloride ions and OII ion(s) of the silicate matrix as ligands. This is a reason, probably, for the high catalytic activity of γ-Fe2O3 nanoparticles.  相似文献   

3.
In this research, we present an experimental procedure to prepare single-phase α-Fe(III) oxide nanoparticles by thermal decomposition of five different precursors including: iron(III) citrate; Fe(C6H5O7), iron(III) acetylacetonate; Fe(C5H7O2)3, and iron(III) oxalate; Fe(C2O4)3, iron(III) acetate; Fe(C2H3O2)3, and the thermal curves obtained were analyzed. The influence of the thermal decomposition of precursors on the formation α-Fe2O3 was studied by differential thermal gravimetry and thermogravimetry. The synthesized powders were characterized by using X-ray diffraction and scanning electron microscopy. High quality iron oxide nanoparticles with narrow size distribution and average particle size between ca. 2 and 30 nm have been obtained. It was found that the iron precursors affect the temperatures of the pure α-Fe2O3 nanoparticle formation with different diameters; iron(III) citrate (29 nm), iron(III) acetylacetonate (37 nm), and iron(III) oxalate (24 nm).  相似文献   

4.
Biocompatible gold nanoparticles have received considerable attention in recent years because of their promising applications in bioimaging, biosensors, biolabels, and biomedicine. The generation of gold nanoparticles using extra-cellular α-amylase for the reduction of AuCl4 with the retention of enzymatic activity in the complex is being reported. The enhanced synthesis of particles has been brought about by optimizing the medium components for α-amylase. Response surface methodology and central composite rotary design (CCRD) were employed to optimize a fermentation medium for the production of α-amylase by Bacillus licheniformis at pH 8. The three variables involved in the study of α-amylase were fructose, peptone and soya meal. Only fructose had a significant effect on α-amylase production. The most optimum medium (medB) containing (%) fructose: 3, peptone: 1, soya meal: 2, resulted in a amylase activity of 201.381 U/ml which is same as that of the central level. The least optimum (medA) and most optimum (medB) media were compared for the synthesis of particles indicated by difference in color formation. Spectrophotometric analysis revealed that the particles exhibited a peak at 582 nm and the A582 for the Med B was 8-fold greater than that of the Med A. The TEM analysis revealed that the particle size ranged from 10 to 50 nm.  相似文献   

5.
HPRP-A1, a 15-mer α-helical cationic peptide, was derived from N-terminus of ribosomal protein L1 (RpL1) of Helicobacter pylori. In this study, HPRP-A1 was used as a framework to obtain a series of peptide analogs with different hydrophobicity by single amino acid substitutions in the center of nonpolar face of the amphipathic helix in order to systematically study the effect of hydrophobicity on biological activities of -helical antimicrobial peptides. Hydrophobicity and net charge of peptides played key roles in the biological activities of these peptide analogs; HPRP-A1 and peptide analogs with relative higher hydrophobicity exerted broad spectrum antimicrobial activity against Gram-negative bacteria, Gram-positive bacteria and pathogenic fungi, but also showed stronger hemolytic activity; the change of hydrophobicity and net charge of peptides had similar effects with close trend and extent on antibacterial activities and antifungal activities. This indicated that there were certain correlations between the antibacterial mode of action and the antifungal mode of action of these peptides in this study. The peptides exhibited antimicrobial specificity for bacteria and fungi, which provided potentials to develop new antimicrobial drugs for clinical practices.  相似文献   

6.
The acid-base properties of the surface of composites based on boron, silicon, and sialon nitrides were investigated by the indicator method of Hammett and Tanabe with spectrophotometric indication. Identification of the surface sites of the composites under study was carried out. On the surface of composites based on boron and sialon nitrides the Lewis base sites dominate, while on the surface of samples based on silicon nitride the Brønsted acid sites. Sorption of dyes and oxalic acid by cermet materials was studied. It is shown that the adsorption activity depends on the nature and amount of surface active sites of the composites.  相似文献   

7.
Electrochemical synthesis of gold nanoparticles on the surface of pyrolytic graphite using penicillin as a stabilizing reagent was proposed. The gold nanoparticles were characterized by scanning electron microscopy, cyclic voltammetry, IR spectra, UV spectra, and powder X-ray diffraction spectra. The electro-chemical catalysis of penicillin for α-naphthylamine was demonstrated.  相似文献   

8.
The relationship between the acid–base properties of commercial and test samples of aluminum oxides and their catalytic activity in the dehydration of -phenylethanol was studied. It was found that, in the dehydration of -phenylethanol, the conversion of the alcohol and the yield of styrene on a catalyst depend on the concentrations of both Brønsted and Lewis acid sites. A hypothetical mechanism of the dehydration with the participation of coordinatively unsaturated aluminum atoms and bridging oxygen ions on the alumina surface was proposed.  相似文献   

9.
Tin oxide (SnO2) nanoparticles were synthesized by the reaction of SnCl4·5H2O in methanol, ethanol and water via sol–gel method. The samples were characterized by X-ray diffraction (XRD), Fourier transform infrared, Scanning electron microscopy and Transmission electron microscopy. The optical properties of the as-prepared samples were investigated. The XRD analysis showed well crystallized tetragonal SnO2 can be obtained and the crystal sizes were 3.9, 4.5 and 5 nm for the sample calcined at 400 °C for 2 h. It was found that solvents played important roles in the particle size effect of nanocrystalline SnO2.  相似文献   

10.
《Mendeleev Communications》2022,32(4):501-503
Hyaluronic acid is a promising coating for imparting biocompatibility to nanodiamond–antibiotic composites. It has been found that the adsorption of Miramistin on nanodiamonds with an initial negative zeta-potential increases the adsorption of hyaluronic acid, which remains lower than on positively charged nanodiamonds that are not affected by the pre-adsorption of Miramistin. The highest adsorption of hyaluronic acid is observed when Miramistin neutralizes the surface charge of nanoparticles.  相似文献   

11.
12.
Surface properties for three binary mixtures containing a 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]) and a long-chain alcohol (1-butanol, 1-pentanol and 1-hexanol) were determined by surface tension data at the following temperatures: (298.15, 308.15, 318.15, 328.15 and 338.15) K. The surface tension data over the entire mole fraction range are correlated by the Fu et al.(FLW) and Myers-Scott (MS) models. There is good agreement between the experimental data and the results of correlations for 15 binary systems (the three systems at five temperatures) with an average relative error below 1.5%. In addition, the UNIFAC group contribution method is applied for calculation of activity coefficients of components in solution. Moreover, the relative adsorptions of alcohol at the air/liquid interface are determined using Gibbs adsorption isotherm. The obtained results show that the values of adsorption for mixtures of alcohols/[BMIM][SCN] increase with increasing the alkyl chain length of alcohol and decreasing temperature.  相似文献   

13.
Fermentation broth normally contains many extracellular enzymes of industrial interest. To separate such enzymes on-line could be useful in reducing the cost of recovery as well as in keeping their yield at a maximum level by minimizing enzyme degradation from broth proteases (either the desired enzymes or the proteases could be removed selectively or both removed together and then separated). Several large-scale separation methods are candidates for such on-line recovery such as ultrafiltration, precipitation, and two-phase partitioning. Another promising technique for on-line recovery is adsorptive bubble fractionation, the subject of this study. Bubble fractionation, like ultrafiltration, does not require contaminating additives and can complement ultrafiltration by preconcentrating the enzymes using the gases normally present in a fermentation process. A mixture of enzymes in an aqueous bubble solution can, in principle, be separated by adjusting the pH of that solution to the isoelectric point (pI) of each enzyme as long as the enzymes have different pIs. The model system investigated here is comprised of three enzyme separations and the problem is posed as the effect of pectinase (a charged enzyme) on the bubble fractionation of invertase (a relatively hydrophilic enzyme) from α-amylase (a relatively hydrophobic enzyme). The primary environmental variable studied, therefore, is the pH in the batch bubble fractionation column. Air was used as the carrier gas. This prototype mixture exemplifies an aerobic fungal fermentation process for producing enzymes. The enzyme concentration here is measured as total protein concentration by the Coomassie Blue (Bradford) solution method (1), both as a function of time and column position for each batch run. Since, from a previous study (2), it was found that invertase and α-amylase in a two-enzyme system can be partially separated in favor of one vs the other at two different pHs (pH 5.0 and 9.0) with significant separation ratios, emphasis is placed on the effect of pectinase at these pHs. In this study, the addition of pectinase reduced the total separation ratio of the α-amylase-invertase mixture at both pHs.  相似文献   

14.
The interactions of α-cyclodextrin (α-CD) with the nonionic surfactant decanoyl-N-methyl-glucamide (Mega-10) and the zwitterionic surfactant dimethyldodecylammoniopropanesulfonate (DPS) in their mixed system have been studied using interfacial tension, fluorescence, and nuclear magnetic resonance measurements. From the plots of interfacial tension vs. log of total surfactant concentration, we have obtained values of the surface excess of surfactant, the critical micellar concentration (cmc), the standard free energy of micelle formation, and association constant of surfactant/α-CD inclusion complexes (assuming a 1:1 stoichiometry). A comparison of the K a values obtained for the interaction between α-CD and DPS and Mega-10, respectively, shows that DPS interacts stronger with α-CD than Mega-10. The experimental mixed cmc was analyzed by the pseudophase separation model and regular solution theory for the evaluation of ideality or nonideality of the mixed micelle formation. The interaction parameters in the mixed micelle and the micelle composition at different mole fractions of DPS were also computed. The fluorescence anisotropy (r) values of rhodamine B decreases with the increase of α-CD concentrations.  相似文献   

15.
16.
17.
A convenient express method for obtaining palladium nanoparticles on the graphene oxide support was developed. The data of transmission electron microscopy and X-ray diffraction analysis indicated the formation of palladium nanoparticles with an average size of 2 nm. The obtained nanocomposite material showed high catalytic activity in the cross-coupling reaction of bromobenzene with phenylboronic acid. The efficiency of the catalyst increases when using a mixture of organic solvents with water.  相似文献   

18.
Mixed metal oxides in the nanoscale are of great interest for many aspects of energy related research topics as water splitting, fuel cells and battery technology. The development of scalable, cost-efficient and robust synthetic routes toward well-defined solid state structures is a major objective in this field.While monometallic oxides have been studied in much detail, reliable synthetic recipes targeting specific crystal structures of mixed metal oxide nanoparticles are largely missing. Yet, in order to meet the requirements for a broad range of technical implementation it is necessary to tailor the properties of mixed metal oxides to the particular purpose. Here, we present a study on the impact of the nature of the gas environment on the resulting crystal structure during a post-synthesis thermal heat treatment of manganese–cobalt oxide nanoparticles. We monitor the evolution of the crystal phase structure as the gas atmosphere is altered from pure nitrogen to synthetic air and pure oxygen. The particle size and homogeneity of the resulting nanoparticles increase with oxygen content, while the crystal structure gradually changes from rocksalt-like to pure spinel. We find the composition of the particles to be independent of the gas atmosphere. The manganese–cobalt oxide nanoparticles exhibited promising electrocatalytic activity regarding oxygen evolution in alkaline electrolyte. These findings offer new synthesis pathways for the direct preparation of versatile utilizable mixed metal oxides.  相似文献   

19.
The influence of anionic poly(acrylic acid) — PAA addition on the stability of synthesized silica, alumina and mixed silica-alumina suspensions as a function of solution pH was studied. The turbidimetry method was used to monitor the changes of the examined systems stability over time. The calculated stability coefficients enabled estimation of polymer adsorption influence on stability of metal oxide suspension. It was shown that the alumina suspension without the polymer is the most unstable at the pH values 6 and 9, whereas the silica polymer was most unstable at pH 3. PAA with higher molecular weight (240 000) is a relatively effective stabilizer of all investigated adsorbents (except silica at pH 3). These properties of poly(acrylic acid) are highly desirable in many branches of industry (e.g. production of cosmetics, pharmaceuticals, paints) where polymers are widely used as effective stabilizers of colloidal suspensions.   相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号