首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Arabian Journal of Chemistry》2020,13(12):9145-9165
A series of novel 3, 4-dihydro-3-methyl-2(1H)-quinazolinone derivatives with substituted amine moieties (113) and substituted aldehyde (S) were designed and synthesized by a reflux condensation reaction in the presence of an acid catalyst to get N-Mannich bases. Mannich bases were evaluated pharmacologically for their antioxidant, α-amylase enzyme inhibition, antimicrobial, cell cytotoxicity and anti-inflammatory activities. Most of the compounds exhibited potent activities against these bioassays. Among them, SH1 and SH13 showed potent antioxidant activity against DPPH free radical at IC50 of 9.94 ± 0.16 µg/mL and 11.68 ± 0.32 µg/mL, respectively. SH7, SH10 and SH13 showed significant results in TAC and TRP antioxidant assays, comparable to that of ascorbic acid. SH2 and SH3 showed potent activity in inhibiting α-amylase enzyme at IC50 of 10.17 ± 0.23 µg/mL and 9.48 ± 0.17 µg/mL, respectively, when compared with acarbose (13.52 ± 0.19 µg/mL). SH7 was the most active against gram-positive and gram-negative bacterial strains, SH13 being the most potent against P. aeruginosa by inhibiting its growth up to 80% (MIC = 11.11 µg/mL). SH4, SH5 and SH6 exhibited significant activity against some fungal strains. Among the thirteen synthesized compounds (SH1-SH13), four were screened out based on the results of brine shrimp lethality assay (LD50) and cell cytotoxicity assay (IC50), to determine their anti-cancer potential against Hep-G2 cells. The study was conducted for 24, 48, and 72 h. SH12 showed potent results at IC50 of 6.48 µM at 72 h when compared with cisplatin (2.56 µM). An in vitro nitric oxide (NO) assay was performed to shortlist compounds for in vivo anti-inflammatory assay. Among shortlisted compounds, SH13 exhibited potent anti-inflammatory activity by decreasing the paw thickness to the maximum compared to the standard, acetylsalicylic acid (ASA).  相似文献   

2.
Inflammatory diseases are associated with life-threatening syndromes like hepatitis, cancer, and trauma injury while some decrease the quality of life such as rheumatism, arthritis, and tuberculosis. 1,2-Diazoles (pyrazolines) play a vital role in COX-2 inhibition thus dinitro-tetrahydrocarbazole linked pyrazolines have been synthesized and endeavor to screen for anti-inflammatory, antioxidant and molecular docking studies. For this purpose, 6,8-dinitro-acetyl-2,3,4,9-tetrahydrocarbazole (I), aromatic aldehydes (IIa-e) and hydrazines (IIIa-b) were combined via multicomponent reaction approach under the influence of microwave irradiations to afford pyrazolines (1–10). All new molecules were screened for in vitro anti-inflammatory activity by human red blood cells membrane stabilization, antioxidant potential by2,2-diphenyl-1-picrylhydrazyl,2,2´-azinobis (3-ethylbenzo thiazoline)-6-sulphonic acid, lipid peroxidation, and total antioxidant capacity assays along with cytotoxicity by brine shrimp lethality assay. Molecular docking was performed by using the Auto Dock program. Both disubstituted and trisubstituted diazoles showed excellent membrane stabilizing effects, (91.89 % and 77 %, respectively). The presence of phenol, furan, thiocarbamide, and chloro-moieties have the most prominent effect. Toxicity results indicated that compounds were less toxic at the tested dose (0.1 mg/ml). The antioxidant study showed that compound 2 was more active showing low IC50 values (32.2 and 39.2 µg/ml) in DPPH and total phenolic contents assays respectively. Compound 3 (44.0 µg/ml) showed the highest potential assay in ABTS radical neutralization assay while compound 7 (65.0 µg/ml) showed maximum potential in lipid peroxidation. All diazoles (110) were screened for in vitro anti-inflammatory potential where disubstituted diazoles were found better than trisubstituted analogs and exhibited significant antioxidant potential. Molecular docking of diazoles showed a good correlation of their anti-inflammatory activity with p38α MAPK, COX-2, and 5-LOX enzymes that are molecular therapeutic targets of inflammation.  相似文献   

3.
Ruellia prostrata Poir. has been used historically as an anti-cancer, wound healing agent and to treat gonorrhea. We aimed to determine the phytochemicals present in ethyl acetate extract of R. prostrata Poir. (EAERP). We sought to determine the antioxidant, anti-inflammatory, and antibacterial activities in vitro, and toxicity properties in vivo. We also analyzed the Prediction of Activity Spectra for Substances (PASS), physicochemical, ADMET, and drug-likeness properties of phytochemicals in EAERP. To determine phytoconstituents, preliminary phytochemical screening and GC–MS were performed, while FT-IR was used to identify functional groups. The antioxidant activity was evaluated using a DPPH scavenging assay, whereas BSA denaturation and RBC hemolysis inhibition were used to assess anti-inflammatory activity. An agar-well-diffusion assay was performed to estimate the antibacterial activity. Brine shrimp lethality bioassay and oral delivery of EAERP of single-dose were performed to determine cytotoxicity and acute toxicity, respectively. The phytochemical screening revealed the presence of phenols, triterpenoids, saponins, steroids, amino acids, and fat and fixed oils. FT-IR analysis of EAERP showed the presence of many functional groups: alcohols/phenols, carboxylic acids, aldehydes, alkanes, esters, amines, amides, aromatic hydrocarbons, sulfoxides, and alkyl halides. GC–MS revealed the presence of 39 phytoconstituents including steroids, consistent with compounds and functional groups found in preliminary screening and FT-IR. EAERP showed dose-dependent antioxidant activity with an IC50 value of 21.402 µg/mL and anti-inflammatory activity with an IC50 value of 20.564 µg/mL in RBC hemolysis inhibition and 21.115 µg/mL in BSA denaturation assays. EAERP also exhibited dose-related antibacterial activity. EAERP exerted cytotoxicity with an LC50 value of 17.619 μg/mL and acute toxicity with an LD50 value of 4095.328 mg/kg without any adverse effects. The PASS server also predicted that the phytoconstituents of EAERP have antioxidant, anti-inflammatory, and antibacterial activities with probable activity (Pa) ranging from 0.310 to 0.717. Analysis of physicochemical, ADMET, and drug-likeness properties revealed the drug-able efficacy and safety of most compounds. The findings of this study indicated that R. prostrata Poir. contains phytoconstituents with potent antioxidant, anti-inflammatory, and antibacterial activities. Taken together, our measurements suggest that R. prostrata Poir. is a prime candidate for further exploration as a potential therapeutic agent.  相似文献   

4.
A high‐performance liquid chromatography (HPLC) method for assay of d ‐Lys6–GnRH contained in a microemulsion‐type formulation is described. The peptide is extracted from the microemulsion matrix and quantified using a two‐step gradient method. Separation from microemulsion compounds and potential peptide oxidation products was achieved on a Jupiter C18 column at 40°C, using a gradient of 10–35% CH3CN for peptide elution. The correlation of peak intensity measured at 220 nm and peptide concentration was linear over the range 2.5–60 µg/mL with a correlation coefficient of 0.9997 and a y‐intercept not significantly different from zero (p > 0.05). Intraday and interday variability of the assay was less than 5% for multiple injections of samples containing 7.5, 30 and 60 µg/mL. The lower limit of quantitation was calculated to be 0.38 µg/mL, and the lower limit of detection was 0.13 µg/mL. The assay was applied to samples that were stressed under physiological conditions (37°C, pH 7.4) over 4 days. Three degradation peaks were well resolved from the parent peptide, demonstrating the selectivity of the assay. Off‐line MALDI TOF mass spectrometry was applied to identify these degradation species as oxidation products of the peptide. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, sensitive and rapid method has been developed for simultaneous separation and quantification of three different drugs: oxytocin (OT), norfloxacin (NOR) and diclofenac (DIC) sodium in milk samples using capillary electrophoresis (CE) with UV detection at 220 nm. Factors affecting the separation were pH, concentration of buffer and applied voltage. Separation was obtained in less than 9 min with sodium tetraborate buffer of pH 10.0 and applied voltage 30 kV. The separation was carried out from uncoated fused silica capillary with effective length of 50 cm with 75 µm i.d. The carrier electrolyte gave reproducible separation with calibration plots linear over 0.15–4.0 µg/mL for OT, 5–1000 µg/mL for NOR and 3–125 µg/mL for DIC. The lower limits of detection (LOD) were found to be 50 ng/mL for OT, and 1 µg/mL for NOR and DIC. The method was validated for the analysis of drugs in milk samples and pharmaceutical preparations with recovery of drugs within the range 96–100% with RSD 0.9–2.8%. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
The volatile components from fresh rhizomes and leaves of Amomum argyrophyllum Ridl. and Amomum dealbatum Roxb. were performed using HS-SPME and charac-terized by GC–MS. A total of 49, 47, 49, and 34 compounds were identified from the rhizomes and leaves of A. argyrophyllum and A. dealbatum, respectively. The major components were β-pinene, α-pinene, and o-cymene. The rhizome extracts exhibited total phenolic content of 2.9 ± 0.5 and 2.1 ± 0.6 mg gallic acid equivalents. The IC50 values of DPPH and ABTS were 179.8 ± 3.9 µg/mL, 392.9 ± 2.6 µg/mL, 120.3 ± 2.5 µg/mL, and 328.6 ± 3.3 µg/mL, respectively. The FRAP values were 76.5 ± 7.8 and 84.9 ± 4.4 µM ascorbic acid equivalents. The extracts showed weak antibacterial activity and tyrosinase inhibitory activity of 69.0 ± 3.6 and 53.7 ± 7.4 mg kojic acid equivalents. The cytotoxicity effect was assessed with the MTT assay at 200 µg/mL. The extracts showed no toxicity. In addition, the anti-inflammatory properties of extracts were evaluated, and showed potential to inhibit nuclear factor-κB (NF-κB) activity.  相似文献   

7.
In this study, vanadium nanoparticles (VNPs) were green synthesized using Foeniculum vulgare extract. VNPs were characterized using chemical analysis techniques including FT-IR, XRD, FE-SEM, TEM and EDS. The microscopy techniques revealed a spherical morphology for the particles with size less than 50 nm. According to XRD data V2O5 was confirmed for VNPs. Maybe significant anti-human acute leukemia potentials of the synthesized nanoparticles against common human acute leukemia cell lines are linked to their antioxidant activities. MTT assay was used on common acute leukemia cell lines i.e., 32D-FLT3-ITD, MOLT-3 and Jurkat, Clone E6-1 to survey the cytotoxicity and anti-acute leukemia effects of the synthesized nanoparticles. The synthesized nanoparticles had very low cell viability and high anti-acute leukemia activities dose-dependently against 32D-FLT3-ITD, MOLT-3 and Jurkat, Clone E6-1 cell lines without cytotoxicity on the normal cell line (HUVEC). To determine the antioxidant properties of the synthesized nanoparticles, the DPPH test was used in the presence of butylated hydroxytoluene as the positive control. The IC50 of VNPs were 25, 33 and 26 µg/mL against 32D-FLT3-ITD, MOLT-3 and Jurkat, Clone E6-1 cell lines, respectively. The synthesized nanoparticles inhibited half of the DPPH molecules in the concentration of 28 µg/mL.  相似文献   

8.
Global public health is seriously threatened by diabetes and its complications. Although several synthetic drugs are currently employed for managing diabetes, however, the adverse effects associated with their use cannot be underestimated. Thus, the quest for a safe and cost-effective alternative is highly imperative. In the present study, the phenolic contents, antioxidant, antidiabetic, and cytotoxic potentials of 70% ethanolic crude extract of Myrtus communis ‘Variegatha’ were investigated using in vitro biochemical protocols. The total polyphenols content was 116.44 mg GAE/g, flavonols (6.74 mg QE/g), flavanols (2.46 mg CE/g) and the ferric reducing antioxidant power (FRAP) value was 1267.28 µmol AAE/g, 2,2-diphenyl-1-picrylhydrazyl (DPPH) (1165.37 µmol TE/g), and Trolox equivalent antioxidant capacity (TEAC) (775.52 µmol TE/g). High-resolution ultra-performance liquid chromatography coupled with electrospray ionisation/quadrupole-time-of-flight-mass spectrometry (UPLC-ESI-QTOF-MS) was explored to identify the phenolic compounds, most of which were flavonoids. The extract demonstrated a strong α-glucosidase inhibition potential in a concentration-dependent manner with IC50 (3.159 µg/mL), which was higher than epigallocatechin gallate (EGCG) (6.208 µg/mL), a positive control antidiabetic drug. A slight increase in glucose utilization was observed after 24 h of treatment in C3A hepatocytes at 25 μg/mL whereas an increase in glucose uptake was recorded at 25 and 50 μg/mL. The extract exhibited a cytotoxic effect (IC50 76.85 µg/mL) against C3A hepatocytes at 100 µg/mL, which correlates to the glucose utilization and uptake recorded. The findings from the study show the prospect of M. communis ‘Variegatha’ as a promising source of bioactive compounds that could be used in the development of new anti-diabetic agents, thus, further research into the plant is recommended.  相似文献   

9.
Justicia vahlii Roth. (acanthaceae) is an important medicinal food plant used in pain relief and topical inflammation. The present study aimed to evaluate phytochemical composition, toxicity, anti-inflammatory, antioxidant and enzyme inhibition potential of n-butanol extract of J. vahlii (BEJv). The extract prepared through maceration was found rich in total phenolic contents (TPC) 196.08 ± 6.01 mg of Gallic acid equivalent (mg GAE/g DE) and total flavonoid contents (TFC) 59.08 ± 1.32 mg of Rutin equivalent (mg RE/g DE). The UPLC-Q-TOF-MS analysis of BEJv showed tentative identification of 87 compounds and 19 compounds were detected in GC–MS analysis. The HPLC-PDA quantification showed the presence of 14 polyphenols amongst which kaempferol (3.45 ± 0.21 µg/ mL DE) and ferulic acid (2.31 ± 1.30 µg/ mL DE) were found in highest quantity. The acute oral toxicity study revealed the safety and biocompatibility of the extract up to 3000 mg/kg in mice. There was no effect of BEJv on human normal liver cells (HL 7702) and very low cytotoxic effect on liver cancer cells (HepG2) and breast cancer cells (MCF-7). In anti-inflammatory evaluation, the BEJv treated groups showed significant inhibition (p < 0.001) of late phase carrageenan induced paw edema at 400 mg/kg and increased the levels of oxidative stress markers; catalase, superoxide dismutase (SOD) and glutathione (GSH) while decreased the inflammatory markers; interleukin-1beta (IL-β) and tumor necrosis factor alpha (TNF-α) in paw tissue of mice. BEJv displayed highest results in Ferric reducing antioxidant power (FRAP) assay 97. 21 ± 2.34 mg TE (trolox equivalent)/g DE, and highest activity 3.32 ± 0.31 mmol ACAE (acarbose equivalent)/g D.E against α-glucosidase. Docking study showed good docking score by the tested compounds against the various clinically significant enzymes. Conclusively the current study unveiled J. vahlii as novel non-toxic source with good antioxidant-mediated anti-inflammatory potential which strongly back the traditional use of the species in pain and inflammation.  相似文献   

10.
Datura metel L. is an important medicinal plant of Solanaceae family which has extensive pharmacological properties. The present investigation was aimed to identify the presence of phytoconstituents and assess in vitro antibacterial, anti-biofilm, anti-diabetic, anti-inflammatory, antioxidant, cytotoxicity, and wound healing efficacy of D. metel leaves extract. Among different solvent extracts, methanolic extract showed higher amount of phenolic (124.61 ± 0.68 mg GAE/g), alkaloid (88.77 ± 1.01 mg AE/g), flavonoids (42.24 ± 0.18 mg QE/g), and tannins contents (38.72 ± 0.51 mg GAE/g). The extract exhibited not only significantly (P < 0.05) different antibacterial activities against pathogens tested but also showed maximum biofilm inhibition of 94, 88, and 92% against B. subtilis, MRSA, and E. coli, respectively. Anti-diabetic assay depicted 22.55 ± 0.62–79.41 ± 1.13% and 24.31 ± 1.47–72.59 ± 0.22% of α-amylase and α-glucosidase inhibition abilities of methanolic extract, respectively at varied concentrations. The methanolic extract showed potential anti-inflammatory effect (P < 0.05) by showing 28.11 ± 0.13, 34.94 ± 1.11, 55.73 ± 0.42, 73.28 ± 0.72, and 92.62 ± 1.33% of inhibition of protein denaturation at different concentrations with an IC50 value of 52.45 µg/mL. The extract revealed significant (P < 0.05) rate of ABTS scavenging, DPPH degradation, and reducing power assay in a concentration dependent manner. The cytotoxicity assay was demonstrated on L929 mouse fibroblast cell line and found > 90% of cell viability in the presence of methanolic extract, thereby indicating its non-toxicity effect. Wound healing assay indicated that methanolic extract at 50 µg/mL closed 100% of wound gap after 24 h with high rate of migration and proliferation. Furthermore, GC–MS chromatogram revealed the presence of several components in methanolic extract, including neophytadiene, hexadecanoic acid, and hentriacontane as principal phytoconstituents. In conclusion, methanolic extract of D. metel leaves could be used as potent therapeutic agent not only for treating metabolic diseases but also superficial chronic diabetic wounds.  相似文献   

11.
This article explores green synthesis as a strategic and sustainable route to fabricate potent zinc oxide nanoparticles. Natural green based antibacterial agents and alternatives are being introduced in the market however there is a dearth in green approach moringa based zinc oxide nanoparticles in personal care products and establishing efficacy. Moringa oleifera comprises various phytochemicals that act as non-toxic stabilizing and reducing agents. Green synthesized ZnO nanoparticles (GsZnO-Nps) were investigated for their morphological and physicochemical properties using various advanced characterizing techniques. The hexagonal wurtzite structure of GsZnO-Nps is determined by X-ray diffractometry (XRD), the average crystallite size is 13.82 nm, total crystallinity was 95.91 % and high specific-surface-area is 77.38 m2/g. Scanning Electron Microscope (SEM) revealed the formation of spherical nanoparticles having a diameter of 50 nm. UV–vis spectrum shows high bandgap energy of 3.36 eV. Results have shown that antioxidant efficacy of GsZnO-Nps is significantly higher than AR-Grade ZnO, evaluated by using 2, 2-diphenyl-1-picrylhydrazyl (DPPH) assay. Half-maximal inhibitory concentration (IC50) of GsZnO-Nps was 21.72 µg/mL and AR-Grade ZnO was 345.57 µg/mL. GsZnO-Nps (0.0183 g/mL) shows robust anti-acne efficacy against Cutibacterium acne (C. acne) organism which estimated by ZOI technique, have average ZOI of 33 mm, with standard error 0.577 mm. Antibacterial efficacy of GsZnO-Nps was established at different concentrations (10, 50, 100, and 200 µg/mL) against Gram-positive and Gram-negative pathogens by zone-of-inhibition (ZOI) method with respect to standard drugs. GsZnO-Nps at 200 µg/mL exhibits high ZOI of 26.75 mm against Escherichia coli (E. coli) and ZOI of 30 mm against Staphylococcus aureus (S. aureus) organisms respectively which is comparatively higher or equal to standard drugs. The minimum inhibitory concentration (MIC) of GsZnO-Nps is 500 µg/mL to inhibit the microbe's growth. GsZnO-Nps established the added benefits of moringa phytochemicals and is an excellent approach to developing eco-friendly and multi-functional versatile products having strong antioxidants, anti-acne and advanced antibacterial efficacy for numerous industrial applications like cosmetic, health hygiene products, drugs, therapeutic etc.  相似文献   

12.
Medicinal plants from Chad grow under special climatic conditions in between the equatorial forest of Central Africa and the desert of North Africa and are understudied. Three medicinal plants from Chad (T. diversifolia, P. Biglobosa and C. Febrifuga) were evaluated for their phenolic composition, antioxidant and enzyme inhibition activities. The total phenolic composition varied from 203.19 ± 0.58 mg GAE/g DW in the ethyl acetate extract of P. biglobosa, to 56.41 ± 0.89 mg GAE/g DW in the methanol extract of C. febrifuga while the total flavonoid content varied from 51.85 ± 0.91 mg QE/g DW in the methanol extract of P. biglobosa to 08.56 ± 0.25 mg QE/g DW in the methanol extract of C. febrifuga. HPLC-DAD revealed that rutin, gallic acid and protocatechuic acid were the most abundant phenolics in T. diversifolia, P. Biglobosa and C. Febrifuga respectively. The antioxidant activity assayed by five different methods revealed very good activity especially in the DPPH?, ABTS?+ and CUPRAC assays where the extracts were more active than the standard compounds used. Good inhibition was exhibited against acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with methanol (IC50: 15.63 ± 0.72 µg/mL), ethyl acetate (IC50: 16.20 ± 0.67 µg/mL) extracts of P. biglobosa, and methanol (IC50: 21.53 ± 0.65 µg/mL) and ethyl acetate (IC50: 30.81 ± 0.48 µg/mL) extracts of T. diversifolia showing higher inhibition than galantamine (IC50: 42.20 ± 0.44 µg/mL) against BChE. Equally, good inhibition was shown on α-amylase and α-glucosidase. On the α-glucosidase, the ethyl acetate (IC50 = 12.47 ± 0.61 µg/mL) and methanol extracts (IC50 = 16.51 ± 0.18 µg/mL) of P. biglobosa showed higher activity compared to the standard acarbose (IC50 = 17.35 ± 0.71 µg/mL) and on α-amylase, the ethyl acetate (IC50 = 13.50 ± 0.90 µg/mL) and methanol (IC50 = 18.12 ± 0.33 µg/mL) extracts of P. biglobosa showed higher activity compared to acarbose (IC50 = 23.84 ± 0.25 µg/mL). The results indicate that these plants are good sources of antioxidant phenolics and can be used to manage oxidative stress linked illnesses such as Alzheimer’s disease and diabetes.  相似文献   

13.
A series of 6-(morpholinosulfonyl)quinoxalin-2(1H)-one based hydrazone, hydrazine, and pyrazole moieties were designed, synthesized, and evaluated for their in vitro antimicrobial activity. All the synthesized quinoxaline derivatives were characterized by IR, NMR (1H /13C), and EI MS. The results displayed good to moderate antimicrobial potential against six bacterial, and two fungal standard strains. Among the tested derivatives, six quinoxalin-2(1H)-one derivatives 4a, 7, 8a, 11b, 13, and 16 exhibited a significant antibacterial activity with MIC values (0.97–62.5 µg/mL), and MBC values (1.94–88.8 µg/mL) compared with Tetracycline (MICs = 15.62–62.5 µg/mL, and MBCs = 18.74–93.75 µg/mL), and Amphotericin B (MICs = 12.49–88.8 µg/mL, and MFC = 34.62–65.62 µg/mL). In addition, according to CLSI standards, the most active quinoxalin-2(1H)-one derivatives demonstrated bactericidal and fungicidal behavior. Moreover, the most active quinoxaline derivatives showed a considerable antibacterial activity with bactericidal potential against multi-drug resistance bacteria (MDRB) strains with MIC values ranged between (1.95–15.62 µg/mL), and MBC values (3.31–31.25 µg/mL) near to standard Norfloxacin (MIC = 0.78–3.13 µg/mL, and MBC = 1.4–5.32 µg/mL. Further, in vitro S. aureus DNA gyrase inhibition activity were evaluated for the promising derivatives and displayed potency with IC50 values (10.93 ± 1.81–26.18 ± 1.22 µM) compared with Ciprofloxacin (26.31 ± 1.64 µM). Interestingly, these derivatives revealed as good immunomodulatory agents by a percentage ranging between 82.8 ± 0.37 and 142.4 ± 0.98 %. Finally, some in silico ADME, toxicity prediction, and molecular docking simulation were performed and showed a promising safety profile with good binding mode.  相似文献   

14.
The human body needs compounds that are antioxidants to prevent oxidative stress. Some parts of the mangosteen fruit (Garcinia mangostana L.) have been known as sources of bioactive compounds that have antioxidant properties. The pericarp and seeds of mangosteen were extracted using the MAE method to produce the extract with the greatest antioxidant activity. There are two types of solvent mixtures used in the extraction process: single-phase and two-phase solvents. The solvents used were ethanol (EtOH), ethyl acetate (EtOAc), isopropyl alcohol (IPA), and water. First, utilizing dried mangosteen pericarp powder as the raw material, a study was undertaken to determine the ideal operating conditions for the MAE process. A one-factor-at-a-time approach was used to find the best operating conditions. A mixture of solvents with varied ratios (mL/mL), extraction temperature (°C), extraction time (min), and solid to solvent ratio (g/mL) were applied as independent variables. Then, dried mangosteen seed powder extraction was carried out based on the best-operating conditions previously achieved. The DPPH scavenging activity, total phenolic content (TPC) value, and α-mangostin content of the two extracts were compared. It was discovered that the mangosteen pericarp extract showed higher antioxidant activity (IC50 DPPH = 9.40 µg/mL) than the mangosteen seed extract (IC50 DPPH = 37.54 µg/mL), even slightly better than ascorbic acid (IC50 DPPH = 10.47 µg/mL). The best extract was produced from the bottom phase of two-phase solvent system (EtOAc:EtOH:Water 2:1:2), with an MAE temperature of 50 °C, a time of 4 min, and a solid-to-solvent ratio of 1:16. The TPC value of the best extract is 903.54 mgGAE/g extract, with a yield of 16.53 % and an α-mangostin concentration of 0.11 %.  相似文献   

15.
A high‐performance liquid chromatographic method was developed for the analysis of 3'‐hydroxypterostilbene. This method involves the use of a Luna® C18 column with ultraviolet detection at 325 nm. The mobile phase consisted of acetonitrile, water and formic acid (50:50:0.01, v/v/v) with a flow rate of 0.8 mL/min. The calibration curves were linear over the range 0.5–100.0 µg/mL. The mean extraction efficiency was between 97.40 and 111.16%. The precision of the assay was 0.196–14.39% (RSD%), and within 15% at the limit of quantitation (0.5 µg/mL). The bias of the assay was <16% and within 15% at the limit of quantitation. This assay was successfully applied to pre‐clinical pharmacokinetic samples from rat urine and serum. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
A series of chalcone analogues (1–15) were synthesized by Claisen-Schmidt condensation in good yields (70–95%) and characterized by FT-IR, 1H NMR and mass spectral methods. Additionally, compounds 3 and 7 were characterized by 13C NMR. Antitubercular and antioxidant activities of the chalcones were evaluated by MABA and DPPH free radical assays. In MABA assay analogues 3 (MIC = 14 ± 0.11 µM) and 11 (MIC = 14 ± 0.17 µM) bearing fluorine and methoxy groups at para and meta positions were 1.8-times more active than the standard pyrazinamide (MIC = 25.34 ± 0.22 µM). The chalcone analogues such as compound 7 (IC50 = 4 ± 1 µg/mL) containing electron releasing groups such as OH at ortho position had slightly more antioxidant activity than Gallic acid (IC50 = 5 ± 1 µg/mL). The potential compounds 3, 7, 9 and 11 were less selective and toxic against human live cell lines-LO2. Further, molecular docking results of chalcones against anti-tubercular drug target isocitrate lyase (PDB ID: 1F8M) revealed that compound 3 and 11 shown least binding energies as ?7.6, and ?7.5 kcal/mol are in line with in vitro MABA assay, suggesting that these compounds 3 and 11 are strong inhibitor of isocitrate lyase. SwissADME programme estimated the drug likeliness properties of compounds 3, 7, 9 and 11. The lead molecules arisen through this study helps to develop new antitubercular and antioxidant agents.  相似文献   

17.
In this study, V2O5 nanoparticles were synthesized in an aqueous medium using Calendula officinalis extract as stabilizing and reducing agents. The synthesized nanoparticles (VNPs@C.officinalis) were characterized using different techniques including UV–Vis. and FT-IR Spectroscopy, X‐ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Energy Dispersive X-ray Spectrometry (EDS). According to the XRD analysis, 28.83 nm was measured for VNPs@C.officinalis crystal size. SEM images exhibited a uniform spherical morphology in size of 38.14 nm for the biosynthesized nanoparticles. To survey the cytotoxicity and anti-human cervical cancer effects of C. officinalis aqueous extract and vanadium nanoparticles, MTT assay was used on C-33 A [c-33a], SiHa, Ca Ski, DoTc2 4510, HT-3, and LM-MEL-41 cell lines. The IC50 of the vanadium nanoparticles were237, 259, 226, 409, 335, and 192 µg/mL against C-33 A [c-33a], SiHa, Ca Ski, DoTc2 4510, HT-3, and LM-MEL-41 cell lines, respectively. To survey the antioxidant properties of Calendula officinalis aqueous extract and vanadium nanoparticles, the DPPH test was used. The vanadium nanoparticles inhibited half of the DPPH molecules in a concentration of 125 µg/mL. As mentioned, the vanadium nanoparticles had significant antioxidant and anti-human cervical cancer effects.  相似文献   

18.
《印度化学会志》2021,98(3):100039
Removal of heavy metals through biosorption using biomass offers several advantages over other conventional techniques such as low cost, high efficiency, environmentally friendly, etc. In the present article, biosorption of Nickel(II) and Lead(II)was investigated using dried biomass of cyanobacterial consortium. OFAT (one-factor-at-a-time) analysis was used to assess the effect of input parameters on the removal of potentially toxic elements by varying initial metal ion concentration (2–10 mgL−1), adsorbent dose (0.1–1.0 gL-1), pH (for Pb(II): 2–6, for Ni(II): 2–8) and temperature (25°C–45°C) individually, at constant shaking speed of 150 ​rpm. Results showed that removal using biomass attained highest values in as short time as 15 ​min. The investigations also showed the removal is highly effective at lower initial concentrations of heavy metals. Maximum removal of Lead(II) (87.27 ​± ​1.75%) and Nickel(II) (92.57 ​± ​0.77%) was obtained at pH 6 and 45°C and at pH 7 and 25°C, respectively, within 15 ​min with 0.1 gL-1 biomass. Both the Langmuir model and Freundlich model were seen to fit the equilibrium data. Further, Artificial Neural Network was used to model the biosorption process. Subsequently, Particle Swarm Optimization was applied to optimize the operating conditions for the removal of both the metals.  相似文献   

19.
A rapid, sensitive and selective liquid chromatography–electrospray ionization mass spectrometric method for the determination of loxoprofen in human plasma was developed. Loxoprofen and ketoprofen (internal standard) were extracted from 20 µL of human plasma sample using ethyl acetate at acidic pH and analyzed on an Atlantis dC18 column with the mobile phase of methanol:water (75:25, v/v). The analytes were quantified in the selected reaction monitoring mode. The standard curve was linear over the concentration range of 0.1–20 µg/mL with a lower limit of quantification of 0.1 µg/mL. The coefficient of variation and relative error for intra‐ and inter‐assay at four quality control levels were 2.8–5.2 and 4.8–7.0%, respectively. The recoveries of loxoprofen and ketoprofen were 69.7 and 67.6%, respectively. The matrix effects for loxoprofen and ketoprofen were practically absent. This method was successfully applied to the pharmacokinetic study of loxoprofen in humans. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
In this work, a simple, fast, sensitive, and environmentally friendly method was developed for preconcentration and quantitative measurement of bisphenol A in water samples using gas chromatography with mass spectrometry. The preconcentration approach, namely biosorption‐based dispersive liquid‐liquid microextraction with extractant removal by magnetic nanoparticles was performed based on the formation of microdroplet of rhamnolipid biosurfactant throughout the aqueous samples, which accelerates the mass transfer process between the extraction solvent and sample solution. The process is then followed by the application of magnetic nanoparticles for easy retrieval of the analyte‐containing extraction solvent. Several important variables were optimized comprehensively including type of disperser solvent and desorption solvent, rhamnolipid concentration, volume of disperser solvent, amount of magnetic nanoparticles, extraction time, desorption time, ionic strength, and sample pH. Under the optimized microextraction and gas chromatography with mass spectrometry conditions, the method demonstrated good linearity over the range of 0.5–500 µg/L with a coefficient of determination of R= 0.9904, low limit of detection (0.15 µg/L) and limit of quantification (0.50 µg/L) of bisphenol A, good analyte recoveries (84–120%) and acceptable relative standard deviation (1.8–14.9%, = 6). The proposed method was successfully applied to three environmental water samples, and bisphenol A was detected in all samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号