首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the present paper we estimate the rate of convergence on functions of bounded variation for the Bézier variant of the Baskakov operators Bn,α(f,x). Here we have studied the rate of convergence of Bn,α(f,x) for the case 0<α<1.  相似文献   

2.
We consider exact and approximate multivariate interpolation of a function f(x 1?,?.?.?.?,?x d ) by a rational function p n,m /q n,m (x 1?,?.?.?.?,?x d ) and develop an error formula for the difference f???p n,m /q n,m . The similarity with a well-known univariate formula for the error in rational interpolation is striking. Exact interpolation is through point values for f and approximate interpolation is through intervals bounding f. The latter allows for some measurement error on the function values, which is controlled and limited by the nature of the interval data. To achieve this result we make use of an error formula obtained for multivariate polynomial interpolation, which we first present in a more general form. The practical usefulness of the error formula in multivariate rational interpolation is illustrated by means of a 4-dimensional example, which is only one of the several problems we tested it on.  相似文献   

3.
A density f=f(x1,…,xd) on [0,∞)d is block decreasing if for each j∈{1,…,d}, it is a decreasing function of xj, when all other components are held fixed. Let us consider the class of all block decreasing densities on [0,1]d bounded by B. We shall study the minimax risk over this class using n i.i.d. observations, the loss being measured by the L1 distance between the estimate and the true density. We prove that if S=log(1+B), lower bounds for the risk are of the form C(Sd/n)1/(d+2), where C is a function of d only. We also prove that a suitable histogram with unequal bin widths as well as a variable kernel estimate achieve the optimal multivariate rate. We present a procedure for choosing all parameters in the kernel estimate automatically without loosing the minimax optimality, even if B and the support of f are unknown.  相似文献   

4.
The existence of solutions in a weak sense of x′ + (A + B(t, x))x = f(t, x), x(0) = x(T) is established under the conditions that A generates a semigroup of compact type on a Hilbert space H; B(t,x) is a bounded linear operator and f(t, x) a function with values in H; for each square integrable ?(t) the problem with B(t, ?(t)) and f(t, ?(t)) in place of B(t, x) and f(t, x) has a unique solution; and B and f satisfy certain boundedness and continuity conditions.  相似文献   

5.
The paper deals with general Baskakov‐Durrmeyer operators containing several previous definitions as special cases. We construct a new sequence of BaskakovDurrmeyer operators depending on a parameter γ. We present a quantitative Voronovskaya type theorem in terms of weighted modulus of smoothness using sixth‐order central moment. In addition, we studied Grü ss‐type Voronovskaya theorem. All results in this work show that our new operators are flexible and sensitive to the rate of convergence to f, depending on our selection of γ(x).  相似文献   

6.
In this paper we examine operators which can be derived from the general solution of functional equations on associativity. We define the characteristics of those functions f(x) which are necessary for the production of operators. We shall show, that with the help of the negation operator for every such function f(x) a function g(x) can be given, from which a disjunctive operator can be derived, and for the three operators the DeMorgan identity is fulfilled. For the fulfillment of the DeMorgan identity the necessary and sufficient conditions are given.We shall also show that an fλ(x) can be constructed for every f(x), so that for the derived kλ(x,y) and dλ(x,y) limλ→∞kλ(x,y) and limλ→∞dλ(x,y) = max(x,y).As Yager's operator is not reducible, for every λ there exists an α, for which, in case x < α and y<α, kλ(x,y) = 0.We shall give an f(x) which has the characteristics of Yager's operator, and which is strictly monotone.Finally we shall show, that with the help of all those f(x), which are necessary when constructing a k(x,y), an F(x) can be constructed which has the properties of the measures of fuzziness introduced by A. De Luca and S. Termini. Some classical fuzziness measures are obtained as special cases of our system.  相似文献   

7.
Our purpose here is to consider on a homogeneous tree two Pompeiutype problems which classically have been studied on the plane and on other geometric manifolds. We obtain results which have remarkably the same flavor as classical theorems. Given a homogeneous tree, letd(x, y) be the distance between verticesx andy, and letf be a function on the vertices. For each vertexx and nonnegative integern let Σ n f(x) be the sum Σ d(x, y)=n f(y) and letB n f(x)=Σ d(x, y)≦n f(y). The purpose is to study to what extent Σ n f andB n f determinef. Since these operators are linear, this is really the study of their kernels. It is easy to find nonzero examples for which Σ n f orB n f vanish for one value ofn. What we do here is to study the problem for two values ofn, the 2-circle and the 2-disk problems (in the cases of Σ n andB n respectively). We show for which pairs of values there can exist non-zero examples and we classify these examples. We employ the combinatorial techniques useful for studying trees and free groups together with some number theory.  相似文献   

8.
In this paper,we study the relationship between iterated resultant and multivariate discriminant.We show that,for generic form f(x_n) with even degree d,if the polynomial is squarefreed after each iteration,the multivariate discriminant △(f) is a factor of the squarefreed iterated resultant.In fact,we find a factor Hp(f,[x_1,...,x_n]) of the squarefreed iterated resultant,and prove that the multivariate discriminant △(f) is a factor of Hp(f,[x_1,...,x_n]).Moreover,we conjecture that Hp(f,[x_1,...,x_n]) = △(f) holds for generic form/,and show that it is true for generic trivariate form f(x,y,z).  相似文献   

9.
Let {?d} be a sequence of nonnegative numbers and f(n) = Σ?d, the sum being over divisors d of n. We say that f has the distribution function F if for all c ≥ 0, the number of integers nx for which f(n) > c is asymptotic to xF(c), and we investigate when F exists and when it is continuous.  相似文献   

10.
Many real world problems are high-dimensional in that their solution is a function which depends on many variables or parameters. This presents a computational challenge since traditional numerical techniques are built on model classes for functions based solely on smoothness. It is known that the approximation of smoothness classes of functions suffers from the so-called ‘curse of dimensionality’. Avoiding this curse requires new model classes for real world functions that match applications. This has led to the introduction of notions such as sparsity, variable reduction, and reduced modeling. One theme that is particularly common is to assume a tensor structure for the target function. This paper investigates how well a rank one function f(x 1,…,x d )=f 1(x 1)?f d (x d ), defined on Ω=[0,1] d can be captured through point queries. It is shown that such a rank one function with component functions f j in $W^{r}_{\infty}([0,1])$ can be captured (in L ) to accuracy O(C(d,r)N ?r ) from N well-chosen point evaluations. The constant C(d,r) scales like d dr . The queries in our algorithms have two ingredients, a set of points built on the results from discrepancy theory and a second adaptive set of queries dependent on the information drawn from the first set. Under the assumption that a point zΩ with nonvanishing f(z) is known, the accuracy improves to O(dN ?r ).  相似文献   

11.
Let f : Rd × RdR be a Borel-measurable function which satisfies ∫Rd|f(θ, x) < ∞, ∨θ ϵ Rd, where q0(·) is a probability measure on (Rd, Bd). The problem of minimization of the function f0(θ) = ∫Rd(θ, x)q0(d), θ ϵ Rd, is considered for the case when the probability measure q0(·) is unknown, but a realization of a non-stationary random process {Xn}n⩾1 whose single probability measures in a certain sense tend to q0(·), is available. The random process {Xn}n⩾1 is defined on a common probability space, R-valued, correlated and satisfies certain uniform mix conditions. The function f(·, ·) is completely known. A stochastic gradient algorithm with random truncations is used for the minimization of f0(·), and its almost sure convergence is proved.  相似文献   

12.
J. Conde 《Discrete Mathematics》2009,309(10):3166-1344
In the context of the degree/diameter problem, the ‘defect’ of a graph represents the difference between the corresponding Moore bound and its order. Thus, a graph with maximum degree d and diameter two has defect two if its order is n=d2−1. Only four extremal graphs of this type, referred to as (d,2,2)-graphs, are known at present: two of degree d=3 and one of degree d=4 and 5, respectively. In this paper we prove, by using algebraic and spectral techniques, that for all values of the degree d within a certain range, (d,2,2)-graphs do not exist.The enumeration of (d,2,2)-graphs is equivalent to the search of binary symmetric matrices A fulfilling that AJn=dJn and A2+A+(1−d)In=Jn+B, where Jn denotes the all-one matrix and B is the adjacency matrix of a union of graph cycles. In order to get the factorization of the characteristic polynomial of A in Q[x], we consider the polynomials Fi,d(x)=fi(x2+x+1−d), where fi(x) denotes the minimal polynomial of the Gauss period , being ζi a primitive ith root of unity. We formulate a conjecture on the irreducibility of Fi,d(x) in Q[x] and we show that its proof would imply the nonexistence of (d,2,2)-graphs for any degree d>5.  相似文献   

13.
Let f be a permutation of V(G). Define δf(x,y)=|dG(x,y)-dG(f(x),f(y))| and δf(G)=∑δf(x,y) over all the unordered pairs {x,y} of distinct vertices of G. Let π(G) denote the smallest positive value of δf(G) among all the permutations f of V(G). The permutation f with δf(G)=π(G) is called a near automorphism of G. In this paper, we study the near automorphisms of cycles Cn and we prove that π(Cn)=4⌊n/2⌋-4, moreover, we obtain the set of near automorphisms of Cn.  相似文献   

14.
A Boolean function f: {?1, +1} n → {?1, +1} is called the sign function of an integer-valued polynomial p(x) if f(x) = sgn(p(x)) for all x ∈ {?1, +1} n . In this case, the polynomial p(x) is called a perceptron for the Boolean function f. The weight of a perceptron is the sum of absolute values of the coefficients of p. We prove that, for a given function, a small change in the degree of a perceptron can strongly affect the value of the required weight. More precisely, for each d = 1, 2, ..., n ? 1, we explicitly construct a function f: {?1, +1} n → {?1, +1} that requires a weight of the form exp{Θ(n)} when it is represented by a degree d perceptron, and that can be represented by a degree d + 1 perceptron with weight equal to only O(n 2). The lower bound exp{Θ(n)} for the degree d also holds for the size of the depth 2 Boolean circuit with a majority function at the top and arbitrary gates of input degree d at the bottom. This gap in the weight values is exponentially larger than those that have been previously found. A similar result is proved for the perceptron length, i.e., for the number of monomials contained in it.  相似文献   

15.
We prove that iff is increasing on [?1,1], then for eachn=1,2,... there is an increasing algebraic polynomialP n of degreen such that |f(x)?P n (x)|≤cω 2(f,√1?x 2/n), whereω 2 is the second-order modulus of smoothness. These results complement the classical pointwise estimates of the same type for unconstrained polynomial approximation. Using these results, we characterize the monotone functions in the generalized Lipschitz spaces through their approximation properties.  相似文献   

16.
A function f : N → R is called additive if f(mn)= f(m)+f(n)for all m, n with(m, n)= 1. Let μ(x)= max n≤x(f(n)f(n + 1))and ν(x)= max n≤x(f(n + 1)f(n)). In 1979, Ruzsa proved that there exists a constant c such that for any additive function f , μ(x)≤ cν(x 2 )+ c f , where c f is a constant depending only on f . Denote by R af the least such constant c. We call R af Ruzsa's constant on additive functions. In this paper, we prove that R af ≤ 20.  相似文献   

17.
Using analytic methods, an asymptotic formula, which holds uniformly for squarefree positive integers d in a suitable range, is obtained for the number of positive integers nx such that (d,f(n)) = 1, where f is an integer-valued multiplicative function such that f(p) is a polynomial in p for p prime, and where d has no prime divisor from a certain finite exceptional set. Examples of such functions f are Euler's function φ and the divisor functions σν (ν = 1,2,…), which case d is assumed to be odd.  相似文献   

18.
For linear combinations of Bernstein-Kantorovich operators Knr(fx), we give an equivalent theorem with ω2r?λ(ft). The theorem unites the corresponding results of classical and Ditzian-Totik moduli of smoothness.  相似文献   

19.
For functions from the Lebesgue space L(?+), we introduce the modified strong dyadic integral J α and the fractional derivative D (α) of order α > 0. We establish criteria for their existence for a given function fL(?+). We find a countable set of eigenfunctions of the operators D (α) and J α, α > 0. We also prove the relations D (α)(J α(f)) = f and J α(D (α)(f)) = f under the condition that $\smallint _{\mathbb{R}_ + } f(x)dx = 0$ . We show the unboundedness of the linear operator $J_\alpha :L_{J_{_\alpha } } \to L(\mathbb{R}_ + )$ , where L J α is its natural domain of definition. A similar assertion is proved for the operator $D^{(\alpha )} :L_{D^{(\alpha )} } \to L(\mathbb{R}_ + )$ . Moreover, for a function fL(?+) and a given point x ∈ ?+, we introduce the modified dyadic derivative d (α)(f)(x) and the modified dyadic integral j α(f)(x). We prove the relations d (α)(J α(f))(x) = f(x) and j α(D (α)(f)) = f(x) at each dyadic Lebesgue point of the function f.  相似文献   

20.
There have been many studies on the dense theorem of approximation by radial basis feedforword neural networks, and some approximation problems by Gaussian radial basis feedforward neural networks(GRBFNs)in some special function space have also been investigated. This paper considers the approximation by the GRBFNs in continuous function space. It is proved that the rate of approximation by GRNFNs with n~d neurons to any continuous function f defined on a compact subset K(R~d)can be controlled by ω(f, n~(-1/2)), where ω(f, t)is the modulus of continuity of the function f .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号