首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Polycrystalline Mg1−xZnxFe2O4 (x=0.0–0.6) ferrites have been prepared using solid-state reaction technique. The X-ray diffraction analysis revealed that the samples crystallize in a single-phase cubic spinel structure. The lattice parameter increases linearly with increase in zinc content obeying Vegard's law. The continuous decrease in Curie temperature (Tc) with an increase in Zn content is attributed to the weakening of A–B exchange interaction. Saturation magnetization (Ms) and magnetic moment are observed to increase up to x=0.4, and thereafter decrease due to the spin canting in B-sites. The initial permeability is found to increase with the addition of Zn2+ ions but the resonance frequency shifts towards the lower frequency.  相似文献   

2.
Cerium-doped Y1−xCexMnO3 compounds have been prepared in single-phase form for x=0 to 0.10. X-ray diffraction (XRD) patterns could be analyzed by using P63cm space group. Temperature variations of ac susceptibility and magnetization measurements show that these Ce-doped materials exhibit weak ferromagnetic transition. The observed ferromagnetic transition is attributed to the double exchange ferromagnetic interaction between Mn2+ and Mn3+ ions due to electron doping. The MH loops exhibit hysteresis along with linear contribution and were analyzed based on bound magnetic polaron (BMP) model. Increase in saturation magnetization and decrease in BMP concentrations have been observed with increase in Ce doping.  相似文献   

3.
Using one-step solid state reaction method, we have successfully synthesized the superconductor SrFe1−xRuxAs. X-ray diffraction indicates that the material has formed the ThCr2Si2-type structure with a space group I4/mmm. The systematic evolution of the lattice constants demonstrates that the Fe ions are successfully replaced by the Ru. By increasing the doping content of Ru, the spin-density-wave (SDW) transition in the parent compound is suppressed and superconductivity emerges. The maximum superconducting transition temperature is found at 13.5 K with the doping level of x = 0.7. The temperature dependence of DC magnetization confirms superconducting transitions at around 12 K. Our results indicate that similar to non-isoelectronic substitution, isoelectronic substitution contributes to changes in both the carrier concentration and internal pressure, and superconductivity could be induced by isoelectronic substitution.  相似文献   

4.
The effects of substitution of Co for Fe on the magnetic and magnetocaloric properties of La0.8Ce0.2Fe11.4−xCoxSi1.6 (0, 0.2, 0.4, 0.6, 0.8 and 1.0) compounds have been investigated. X-ray diffraction shows that all compounds crystallize in the NaZn13-type structure. Magnetic measurements show that the Curie temperature (TC) can be tuned between 184 and 294 K by changing the Co content from 0 to 1. A field-induced methamagnetic transition occurs in samples with x=0, 0.2 and 0.4. The magnetic entropy changes of the compounds have been determined from the isothermal magnetization measurements by using the Maxwell relation.  相似文献   

5.
The Potts-like model is utilized to describe an alloy Gd1−xCx with x=0, 0.025, 0.06, 0.09, and the magnetic and magnetocaloric properties are calculated by Monte Carlo method. The effect of the local distortion of the lattice due to adulterated C atom on the exchange interaction between Gd atoms can be considered. The spontaneous magnetization, specific heat, and magnetic susceptibility are calculated. It is found that the magnetization at low temperature decreases but phase transition temperature from ferromagnetic to paramagnetic increases, as the concentration of the C atom in the system increases. Moreover, the specific heat and the susceptibility exhibit peaks at the transition temperature. For two external magnetic field h/J=0.25 and 10.0, the magnitude of the isothermal magnetic entropy change in binary alloy is more than in pure Gd system. Furthermore, the range of temperature of half peak in the curve of the magnetic entropy change becomes wide and the refrigerant capacity increases in the alloy.  相似文献   

6.
Electron spin resonance (ESR) measurements have been performed on polycrystalline samples of Pr1−xCaxMnO3 (x=0.4, 0.5) in the temperature range of 100-300 K. The temperature dependence of ESR intensity, g value and linewidth shows the existence of ferromagnetic spin correlations in the paramagnetic state. With decreasing temperature, the ferromagnetic spin correlations switch to antiferromagnetic spin correlations in the charge ordering state and vanish at the antiferromagnetic ordering temperature TN.  相似文献   

7.
The vapor grown SbSBrxI1−x (x=0.1; 0.5; 0.9) crystals with clear mirror surfaces have been used for infrared reflection measurements with Fourier spectrometer. The vibration frequencies along c(z)-axis have been derived from Kramers–Kroning and optical parameters fitting analysis of the experimental reflectivity spectra at T=300 K. The theoretical vibration spectra of SbSBrxS1−x (x=0.1; 0.5; 0.9) crystals in paraelectric phase (T=300 K) along c(z)-axis have been determined in quasiharmonic approximation by diagonalization of dynamical matrix. The theoretical vibration spectra of these crystals in ab(xy) plane have been determined in harmonic approximation. In this work we discuss the nature of anharmonism in SbSBrxI1−x crystals along the c(z)-axis.  相似文献   

8.
The structural and magnetic properties of epitaxial In1−xMnxAs1−yPy quaternary layers with Mn content ranging from 0.01 to 0.04 and phosphorous content ranging from 0.11 to 0.21 were studied. X-ray diffraction indicated that the films were two phase consisting of an InMnAsP solid solution and hexagonal MnAs nanoprecipitates. Addition of phosphorus promoted precipitate formation. Films were ferromagnetic showing hysteretic behavior in the field dependence of magnetization at 5 and 298 K. From field-cooled magnetization measurements ferromagnetic transitions were observed at 280 and 325 K. The zero field-cooled magnetization versus temperature measurements showed irreversibility for T<300 K that was attributed to the presence of MnAs nanoprecipitates. The calculated coercivity using the Neel model was 1380 G compared to the experimental value of 380 G at 5 K. The difference was attributed to a strong inter-cluster exchange that stabilizes the ferromagnetic state.  相似文献   

9.
The effects of monovalent doping on the crystallographic, magnetic and magnetocaloric properties of La0.65Ba0.3M0.05MnO3 (M=Na, Ag, K) powder samples, elaborated using the solid state reaction method at high temperature, have been investigated. In our three samples the Mn4+ amount remains constant equal to 40%. The Rietveld refinement of the X-ray powder diffraction shows that all our synthesized samples are single phase and crystallize in the distorted rhombohedral system with R3¯c space group. All our studied samples undergo a paramagnetic–ferromagnetic transition with decreasing temperature. Using the Arrott plot, the second-order transition Curie temperature TC for M=Na, Ag and K is found to be 310, 300 and 290 K, respectively. The magnetic entropy change, deduced from isothermal magnetization curves, exhibits a maximum |ΔSMMax| of about 2.65, 2.82 and 2.66 J/kg K for M=Na, Ag and K, respectively, in a magnetic applied field change of 5 T. Although these values are modest, the magnetocaloric effect extends over a large temperature range leading to an important value of the relative cooling power (RCP). The RCP values exhibit a nearly linear dependence with the magnetic applied field. The refrigeration capacity in a magnetic applied field of 1 T is found to be 28.8, 27.8 and 25.6 J/kg for M=Na, Ag and K compounds.  相似文献   

10.
Lead-free multi-component ceramics (Bi1−xyNa0.925−xyLi0.075)0.5BaxSryTiO3 have been prepared by an ordinary sintering technique and their structure and electrical properties have been studied. All the ceramics can be well-sintered at 1100 °C. X-ray diffraction patterns shows that Li+, Ba2+ and Sr2+ diffuse into the Bi0.5Na0.5TiO3 lattices to form a new solid solution with a pure perovskite structure, and a morphotropic phase boundary (MPB) is formed at 0.04 < x < 0.08. As compared to pure Bi0.5Na0.5TiO3 ceramic, the coercive field EC of the ceramics decreases greatly and the remanent polarization Pr of the ceramics increases significantly after the formation of the multi-component solid solution. Due to the MPB, lower EC and higher Pr, the piezoelectricity of the ceramics is greatly improved. For the ceramics with the compositions near the MPB (x = 0.04–0.08 and y = 0.02–0.04), piezoelectric coefficient d33 = 133–193 pC/N and planar electromechanical coupling factor kP = 16.2–32.1%. The depolarization temperature Td reaches a minimum value near the MPB. The temperature dependences of the ferroelectric and dielectric properties suggest that the ceramics may contain both the polar and non-polar regions at temperatures near/above Td.  相似文献   

11.
Effects of a combined substitute of Yb and Nd on Y site on the superconducting properties of YBa2Cu3Oy have been studied. We synthesized Y1−x(Yb0.9Nd0.1)xBa2Cu3Oz compound with x = 0.2, 0.4, 0.6, 0.8 and 1.0. Here, the ratio of Yb–Nd was fixed to be 9:1 for obtaining 123 phase without secondary phases. The melt processing thermal profiles for Y1−x(Yb0.9Nd0.1)xBa2Cu3Oz with x = 0.2 and 0.4 and the addition of 40 mol% {Y1−x(Yb0.9Nd0.1)x}2BaCuO5 and 0.5 wt% Pt in air were determined on the basis of the thermal analysis results. All samples showed a low grain growth rate, particularly for high x values, which may be partially ascribed to un-optimized thermal schedules. Although almost all the samples exhibited low Jc values, the sample with x = 0.2 exhibited Tc of 88.8 K and a relatively high Jc value of 16,000 A/cm2 at 77 K for H//c-axis.  相似文献   

12.
Magnetocaloric effect (MCE) in fine-grained perovskite manganites of the type La0.67Ba0.33Mn1−xSnxO3 (x=0.05, 0.1 and 0.15) were prepared by the solid-state method. The prepared samples remain single phase and exhibit paramagnetic to ferromagnetic phase transition (TC) at 340, 325 and 288 K for x=0.05, 0.1 and 0.15, respectively. From the measured magnetization data of La0.67Ba0.33Mn1−xSnxO3 compounds as a function of field (2 T), the associated magnetic entropy change close to their respective Curie temperatures and the relative cooling power (RCP) have been determined. Large MCE has been obtained in all samples and |ΔSM|max reached the highest value of 2.49 J/kg K at TC (288 K) for the sample x=0.15, with H=2 T.  相似文献   

13.
We have investigated the magnetic and electrical transport properties of Si1−xMnx single crystals grown by the vertical Bridgman method. The alloys with Mn concentrations up to x=0.64 have weak ferromagnetic ordering around TC∼30 K. However, Si0.25Mn0.75 alloys show weak ferromagnetic ordering at 70 K and antiferromagnetic ordering at 104 K, which is confirmed by magnetization and electrical transport studies.  相似文献   

14.
Magnetic and transport properties of (La0.7Pb0.3MnO3)1−xAgx composites are explored in this study. Ferromagnetism is gradually attenuated due to the magnetic dilution with increase of Ag content percentage. Clearly irreversible behavior in the zero-field cooling and field cooling curves at a low field caused by the competition between the magnetization and magnetic domain orientation processes has been observed as x increases. Saturation magnetization decreases as x increases, while ferromagnetic transition temperature remains around 346 K for all composites. The resistivity decreases significantly for (La0.7Pb0.3MnO3)1−xAgx composites. It is suggested that introduction of Ag into the niche of grain boundaries forms artificial conducting network and improves the carriers to transport. However, enhancement of magnetoresistance has been observed for the system.  相似文献   

15.
The magnetic phase diagram for Mg1−xZnxCyNi3 has been tentatively constructed based on magnetization and muon spin relaxation (μSR) measurements. The superconducting phase was observed to fade as x (y) increases (decreases). The low y samples show early stages of long-range ferromagnetism, or complete long-range ferromagnetism. In the phase diagram, the ferromagnetic phase exists in addition to the superconducting phase, suggesting that there is some correlation between superconductivity and ferromagnetism, even though the coexistence of ferromagnetism and superconductivity is not observed from the μSR measurements down to 20 mK for the superconducting sample (Tc=2.5 K, (x, y)=(0, 0.9)).  相似文献   

16.
CdxZn(1−x)S (x = 0, 0.2, 0.4, 0.6, 0.8, and 1) thin films were deposited by the chemical spray pyrolysis technique using a less used combination of chemicals. Depositions were done at 573 K on cleaned glass substrates. The composition, surface morphology and structural properties of deposited films were studied using EDAX, SEM and X-ray diffraction technique. XRD studies reveal that all the films are crystalline with hexagonal (wurtzite) structure and inclusion of Cd into the structure of ZnS improved the crystallinity of the films. The value of lattice constant ‘a’ and ‘c’ have been observed to vary with composition from 0.382 to 0.415 nm and 0.625 to 0.675 nm, respectively. The band gap of the thin films varied from 3.32 to 2.41 eV as composition varied from x = 0.0–1.0. It was observed that presence of small amount of cadmium results in marked changes in the optical band gap of ZnS.  相似文献   

17.
Nd1−xSrxMnO3 perovskite manganite material with different compositions (x=0.31, 0.35, 0.37, 0.39 and 0.41) have been prepared employing solid-state reaction technique. The ultrasonic velocities and attenuation of the above samples have been measured employing through transmission method operated at a fundamental frequency of 5 MHz over wide range of temperatures. The temperature dependence of ultrasonic velocities, attenuation, relative percentage variation in velocities and elastic constants show an interesting anomaly in all compositions. The observed anomalies in ultrasonic parameters at Tc in all compositions have been revealed in terms of existence of ferromagnetic (FM) state. Similarly, the anomalies at Tco show the transition from FM to charge-ordered antiferromagnetic (AFM) state. The observed results have been used to explore the competitions between FM and AFM.  相似文献   

18.
We have prepared iron-oxypnictide SmFeAsO1−xFx by ambient-pressure technique and SmFeAsO1−y by high-pressure technique, and characterized their bulk and local magnetic properties by using SQUID magnetometer and magneto-optical imaging. While the high-pressure samples have densities close to the theoretical value, the ambient-pressure samples have several small voids. Despite these structural differences between the two kinds of samples, they both have superconducting transition temperature above 50 K. In addition, magneto-optical images for both samples show similar kinds of inhomogeneities with large current concentrated in several grains and with small intergranular current. The estimated intragranular currents for both samples are over 105 A/cm2 at low temperatures and low fields.  相似文献   

19.
The influence of the substitution of manganese by boron on the crystal structure and magnetic properties of Ni2Mn1−xBxGa Heusler alloys with 0?x?0.5 has been investigated using X-ray diffraction, thermal expansion, resistivity, and magnetization measurements. The samples with concentrations x<0.25 were found to be of single phase and belonged to the cubic L21 crystal structure at room temperature. Crystal cell parameters of the alloys decreased from 5.830 to 5.825 Å with increasing boron concentration (x) from 0 to 0.25. The alloys were ferromagnetically ordered at 5 K and the saturation magnetization decreased with increasing boron concentration. The ferromagnetic ordering and structural transition temperatures for 0?x?0.3 have been observed and the phase (xT) diagram of the Ni2Mn1−xBxGa system was constructed. The phase (xT) diagram indicates that the ground state of Ni2Mn1−xBxGa alloys belongs to ferromagnetic martensitic, premartensitic, and austenitic phases in x?0.12, 0.12<x?0.18, and 0.18<x?0.3, respectively. The relative influence of cell parameters and electron concentrations on the phase diagram is discussed.  相似文献   

20.
It is expected that joint existence of ferromagnetic properties and ferroelectric structural phase transition in diluted magnetic semiconductors IV-VI leads to new possibilities of these materials. Temperature of ferroelectric transition for such crystals can be tuned by the change of Sn/Ge ratio. Magnetic susceptibility, Hall effect, resistivity and thermoelectric power of Ge1−xySnxMnyTe single crystals grown by Bridgeman method (x=0.083-0.115; y=0.025-0.124) were investigated within 4.2-300 K. An existence of FM ordering at TC∼50 K probably due to indirect exchange interaction between Mn ions via degenerated hole gas was revealed. A divergence of magnetic moment temperature dependences at T?TC in field-cooled and zero-field-cooled regimes is obliged to magnetic clusters which are responsible for superparamagnetism at T>TCTf (freezing temperature) and become ferromagnetic at TC arranging spin glass state at T<TfTC. Phase transition of ferroelectric type at T≈46 K was revealed. Anomalous Hall effect which allows to determine magnetic moment was observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号