首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Heterocyclic-thiocarboxylato complexes of iron, CpFe(CO)2SCO-het (het?=?2-C4H3O, 2-C4H3S, CH2-2-C4H3S), have been synthesized via the reaction of iron sulfides, (μ-S x )[CpFe(CO)2]2 (x?=?3,?4), with heterocyclic acid chlorides het-COCl. Photolytic substitutions of these complexes CpFe(CO)2SCO-het with triphenylphosphine, triethylphosphite, triphenylarsine, and triphenylantimony [ER3 (E?=?P, R?=?Ph, OC2H5; E?=?As, Sb, R?=?Ph)] exclusively gave the monosubstituted complexes CpFe(CO)(ER3)SCO-het in good yields. The new complexes have been characterized by elemental analysis, UV-Vis, IR, 1H, and 31P NMR spectroscopies and by cyclic voltammetry for a representative family (1, 4a–d). The solid state structures of CpFe(CO)2SCO(2-C4H3S) (2), CpFe(CO)(PPh3)SCO(2-C4H3S) (5a), CpFe(CO)(AsPh3)SCO(2-C4H3S) (5b), and CpFe(CO)(SbPh3)SCO(2-C4H3S) (5c) were determined by X-ray crystal structure analysis.  相似文献   

2.
Two new heteropolyoxovanadoborates (H2dap)2H6{(VO)12O6[B3O6(OH)]6(H2O)}·13H2O (1, dap = 1,2-diaminopropane) and {[Zn(dien)]2[Zn(dien)(H2O)]4(VO)12O6[B3O6(OH)]6(H2O)}2·15H2O (2, dien = diethylenetriamine) have been hydrothermally synthesized and structurally characterized. Both 1 and 2 contain {(VO)12O6[B3O6(OH)]6(H2O)} cluster (denoted on V12B18), which is constructed by a puckered B18O36(OH)6 ring sandwiched between two triangles of six alternating cis and trans edge-sharing vanadium atoms, and a central water molecule. 1 consists of discrete [V12B18]10− cluster anions with H2dap2+ as counterions, while 2 consists of discrete neutral {[Zn(dien)]2[Zn(dien)(H2O)]4[V12B18]} clusters, which are built from two types of zinc(II) complex fragments connecting with V12B18 cluster through two Zn-(μ 3-O)-B bonds. Interestingly, 2 is the only example of the V12B18 cluster decorated by two types of zinc(II) complex fragments.  相似文献   

3.
Photolytic substitutions of iron selenocarboxylate complexes CpFe(CO)2SeCOR with triphenylphosphine, triphenylarsine or triphenylantimony (EPh3) gave exclusively the monosubstituted complexes CpFe(CO)(EPh3)SeCOR [R = 3,5-C6H3(NO2)2 (1), 4-C6H4NO2 (2), Ph (3), 2-C6H4Me (4), and E = P (a), As (b), Sb (c)] in high yields.  相似文献   

4.
The reaction of a sulfur and oxygen-bridged 8-quinolinolato trinuclear molybdenum cluster [Mo3OS3(qn)3(H2O)3]+ (3; Hqn = 8-quinolinol) with equimolar amounts of acetylene carboxylic acid, 4-pentynoic acid, 5-hexynoic acid, acetic acid, and pimelic acid gave clusters having μ-carboxylato groups, [Mo3OS3(qn)3(H2O)(μ-HC≡CCOO)] (6), [Mo3OS3(qn)3(H2O)(μ-HC≡C(CH2)2COO)] (7), [Mo3OS3(qn)3(H2O)(μ-HC≡C(CH2)3COO)] (8), [Mo3OS3(qn)3(H2O)(μ-CH3COO)] (4), and [{Mo3OS3(qn)3(C2H5OH)}2(μ-C7H10O4)] (5), respectively. X-ray structural analyses, 1H NMR, and electronic spectra of these clusters made clear that each of the COO groups of the reagents bridges two Mo atoms in each cluster and that no adduct formation occurred at the sulfurs in the clusters. The reaction of 3 with a large excess-molar amount (50 times) of acetylene carboxylic acid gave [Mo3OS(μ3-SCH=C(COOH)S)(qn)3(H2O)(μ-HC≡CCOO)] (9) with two molecules of acetylene carboxylic acid, one acting as a carboxylato bridge and the other in adduct formation, as supported by the electronic and 1H NMR spectra. The corresponding aqua cluster [Mo3OS3(H2O)9]4+ (1), on the contrary, reacts with acetylene carboxylic acid to give adduct [Mo3OS(μ3-SCH=C(COOH)S)(H2O)9]4+ (2). Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

5.
In the compound [Ni(Bptc)2(Bimb)2(H2O)2] (I), where H4Bptc is 3,3′,4,4′-biphenyltetracarboxylic acid; Bimb is 4,4′-bis(1-imidazolyl)biphenyl), Ni(II) has a distorted octahedral coordination geometry, which was bonded with two N atoms from two Bimb ligands, two O atoms from two H2Bptc2− ligands and two water O atoms. The crystal structure of compound I is stabilized by the π-π-stacking and hydrogen bonds interaction.  相似文献   

6.
Treatment of the iron selenide (μ‐Se)[CpFe(CO)2]2 with one equivalent of 1, 3, 5‐C6H3(COCl)3 gave the organoiron selenocarboxylate complex CpFe(CO)2SeCO‐3, 5‐C6H3(COCl)2 ( 1 ), which contains two free acid chloride groups. Complex 1 reacted with amines, thiols, and phenols to produce the corresponding amides CpFe(CO)2SeCO‐3, 5‐C6H3(CONR2)2 ( 2 ), thioesters CpFe(CO)2SeCO‐3, 5‐C6H3(COSR)2( 3 ), and aromatic esters CpFe(CO)2SeCO‐3, 5‐C6H3(CO2Ar)2 ( 4 ), respectively. Complex 1 was converted into the diacid CpFe(CO)2SeCO‐3, 5‐C6H3(COOH)2 ( 5 ) or the diamide CpFe(CO)2SeCO‐3, 5‐C6H3(CONH2)2 ( 6 ) complexes by reactions with NaOH or NaNH2, respectively. The bis(seleno)‐1, 3‐(CpFe(CO)2SeCO)2‐5‐C6H3(COCl) ( 7 ) and tris(seleno)‐carboxylate 1, 3, 5‐(CpFe(CO)2SeCO)3C6H3 ( 8 ) complexes were also prepared by controlled reaction of 1, 3, 5‐C6H3(COCl)3 with the iron selenide (μ‐Se)[CpFe(CO)2]2. Complexes 1 – 8 were characterized by spectroscopic techniques (IR, 1H‐NMR) and by elemental analysis as well. The X‐ray structures of CpFe(CO)2SeCO‐3, 5‐C6H3(COCl)2 ( 1 ) and CpFe(CO)2SeCO‐3, 5‐C6H3(COSCH2Ph)2 ( 3b ) were determined.  相似文献   

7.
The visible light irradiation of the [(η5-C6H7)Fe(η-C6H6)]+ cation (1) in acetonitrile resulted in the substitution of the benzene ligand to form the labile acetonitrile species [(η5-C6H7)Fe(MeCN)3]+ (2). The reaction of 1 with ButNC in MeCN produced the stable isonitrile complex [(η5-C6H7)Fe(ButNC)3]+ (3). The photochemical reaction of cation 1 with pentaphosphaferrocene Cp*Fe(η-cyclo-P5) afforded the triple-decker cation with the bridging pentaphospholyl ligand, [(η5-C6H7)Fe(μ-η:η-cyclo-P5)FeCp*]+ (4). The latter complex was also synthesized by the reaction of cation 2 with Cp*Fe(η-cyclo-P5). The structure of the complex [3]PF6 was established by X-ray diffraction. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2088–2091, November, 2007.  相似文献   

8.
The photochemical CO-loss products of the diruthenium complexes [CpRu(CO) 2]2 (5; Cp = 5-C5H5), [Cp*Ru(CO)2]2 (5*; Cp* = 5-C5(CH3)5) and CpCp*[Ru(CO)2]2 (5) have been studied experimentally in low-temperature (96 K) matrices in 3-methylpentane by using IR spectroscopy. It is proposed that all three complexes undergo single-CO-loss chemistry but that the products have different structures. The single-CO-loss product from 5 is proposed to have one bridging and two terminal carbonyl ligands, whereas 5* and 5 generate triply bridged CO-loss products similar to that observed from [CpFe(CO)2]2 and [Cp*Fe(CO)2]2. Double-CO-loss from 5* and 5* 9 is also apparently observed. Relativistic DFT calculations have been carried out on various isomers of the starting materials and on potential CO-loss products from 5. The calculations suggest that the triply bridged product Cp2Ru2(-CO)3 (6) might have a singlet ground state in contrast to the corresponding diiron complex Cp2Fe2(-CO)3 (3), which has a triplet ground state.  相似文献   

9.
The synthesis, characterization and thermal analysis of the novel cyclometallated compounds [Pd2(dmba)2Cl2(μ-bpe)] (1), [Pd2(dmba)2(N3)2(μ-bpe)] (2), [Pd2(dmba)2(NCO)2(μ-bpe)] (3), [Pd2(dmba)2(SCN)2(μ-bpe)] (4), [Pd2(dmba)2(NO3)2(μ-bpe)] (5) (bpe=trans-1,2-bis(4-pyridyl)ethylene; dmba=N,N-dimethylbenzylamine) are described. The thermal stability of [Pd2(dmba)2X2(μ-bpe)] complexes varies in the sequence 1>4>3>2>5. The final residues of the thermal decompositions were characterized as metallic palladium by X-ray powder diffraction.  相似文献   

10.
The oxidation of [CpFe(CO)2]2 by RTeBr3 allowed the corresponding organotellurodibromide complexes CpFe(CO)2TeBr2R (R=Ph, cyclo-(C8H12)(OMe). Their structural features (as determined by single-crystal X-ray diffraction analysis) are discussed.  相似文献   

11.
Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)][BF4] (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne generates the unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. A possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] is suggested. Graphical Abstract  Formal [2 + 2 + 2] addition reaction of [Cp*Ru(H2O)(NBD)]BF4 (NBD = norbornadiene) with 4,4′-Diethynylbiphenyl generates [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2. The reaction of [Cp*Ru(H2O)(NBD)][BF4] with 1,4-diphenylbutadiyne simply generates unusual [2 + 2 + 2] additional organic compound Ph–C≡C–C9H8–Ph in addition to the organometallic compound [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4]. [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BPh4]2 is generated after the reaction of compound [C9H96-C6H4(RuCp*)–C6H4(RuCp*)-η6-C9H9][BF4]2 with Na[BPh4]. The structure of this compound was confirmed by X-ray diffraction. And the possible approach to form Ph–C≡C–C9H8–Ph and [Cp*Ru(η6-C6H5–C≡C–C≡C–Ph)][BF4] was suggested. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

12.
Mer-[Mo(CO)3(p-C5H4N-CN)3] was prepared by UV-irradiation of a THF solution of Mo(CO)6 and para-cyanopyridine under heating. The complex was characterized by FT-IR, MS, 1H and 13C NMR and showed catalytic activity for olefin hydroformylation (1-hexene, cyclohexene and 2,3-dimethyl-2-butene as model olefins; 600 psi synthesis gas (pCO/pH2 = 1); 100 °C; 24 h; toluene). An examination of the complex catalyzed hydroformylation of a real naphtha cut (El Palito refinery, Venezuela), under the same conditions, also showed activity in the conversion to oxygenated products.  相似文献   

13.
The structures of pentacoordinate silylenoid PhCH2(NH2)CH3SiLiF were studied by density functional theory at the B3LYP/6-31G(d) level. Three equilibrium structures, the three-membered ring (1), the p-complex (2), and the σ-complex (3) structures, were located. Their energies are in the order of 2 > 1 > 3 both in vacuum and in THF. To exploit the stability of PhCH2(NH2)CH3SiLiF, the insertion reactions of 1 and PhCH2(NH2)CH3Si into C–F have been investigated, respectively. The results show that the insertion of PhCH2(NH2)CH3Si is more favorable. To probe the influence of amine-coordination to the stability of PhCH2(NH2)CH3SiLiF, the insertion reaction of PhCH3CH3SiLiF was also investigated. The calculations indicate that the insertion of PhCH3CH3SiLiF is more favorable than that of 1. So the N atom plays an important role on the stability of silylenoid PhCH2(NH2)CH3SiLiF.  相似文献   

14.
The complexes Ru2(CO)6(μ-H)(O=C(CH=CHPh)C(H)=CPh) (5), Ru3(CO)8-(O=C(CH=CHPh)C(H)=CPh)2 (6), and Ru3(CO)7(O=C(CH=CPh)C(H)=CPh)-(O=C(CH2-CH2Ph)C(H)=CPh) (7) were obtained in the reaction of Ru3(CO)12 with dibenzylideneacetone PhCH=CHCOCH=CHPh. The structures of complexes 5 and 6 were established by NMR and IR spectroscopy and elemental analysis. The structure of complex 7 was established by X-ray diffraction. The structural and spectroscopic features of the complexes, as well as their possible formation and interconversion pathways are discussed.  相似文献   

15.
The dicationic arene complexes [CpM(arene)](BF4)2 (arene = C6H6, 1,3,5-C6H3Me3, or C6Me6) were synthesized by the reactions of the solvated complexes [CpM(MeNO2)3](BF4)2 (M = Rh, Ir) with benzene and its derivatives. The solvated complexes were generated in situ by abstraction of I from [CpMI2]2 with AgBF4. A procedure was developed for the synthesis of the iodide [CpRhI2]2 based on the reaction of the cyclooctadiene derivative CpRh(1,5-C8H12) with I2. The structure of the [CpRh(C6Me6)](BF4)2 complex was established by X-ray diffraction analysis.Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 1871–1874, September, 2004.  相似文献   

16.
The polymetallic [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl](PF6)2 complex (bpy = 2,2′-bipyridine, BPE = trans-1,2-bis(4-pyridil)ethylene and py = pyridine) was assembled by the combination of an electroactive [Ru3O] moiety with a [Ru(bpy)2(BPE)Cl] photoactive centre, and its structure was determined using positive ion electrospray (ESI-MS) and tandem mass (ESI-MS/MS) spectrometry. The [Ru3O(CH3COO)6(py)2(BPE)Ru(bpy)2Cl]2+ doubly charged ion of m/z 732 was mass-selected and subject to 15 eV collision-induced dissociation, leading to a specific dissociation pattern, diagnostic of the complex structure. The electronic spectra display broad bands at 409, 491 and 692 nm ascribed to the [Ru(bpy)2(BPE)] charge-transfer bands and to the [Ru3O] internal cluster transitions. The cyclic voltammetry shows five reversible waves at −1.07 V, 0.13 V, 1.17 V, 2.91 V and −1.29 V (vs SHE) assigned to the [Ru3O]−1/0/+1/+2/+3 and to the bpy0/−1 redox processes; also a wave is observed at 0.96 V, assigned to the Ru+2/+3 pair. Despite the conjugated BPE bridge, the electrochemical and spectroelectrochemical results indicate only a weak coupling through the π-system, and preliminary photophysical essays showed the compound decomposes under visible light irradiation.  相似文献   

17.
Hydrolysis of magnesium complexes containing the dianionic acenaphthenediimine ligands, (dpp-BIAN)Mg(thf)3 (1), (dph-BIAN)Mg(thf)3 (2), and (dtb-BIAN)Mg(thf)2 (3) (dpp-BIAN is 1,2-bis{ (2,6-diisopropylphenyl)imino}acenaphthene; dph-BIAN is 1,2-bis{(2-diphenyl)imino}acenaphthene; dtb-BIAN is 1,2-bis{(2,5-di-tert-butylphenyl)imino}acenaphthene), affords the corresponding diamines (dpp-BIAN)H2 (4), (dph-BIAN)H2(Et2O) (5), and (dtb-BIAN)H2 (6). Compounds 4 and 5 were isolated in the crystalline state and characterized by UV-Vis, IR, and 1H NMR spectroscopy. Partial hydrolysis of (dpp-BIAN)Na2(Et2O)3 gave the crystalline (dpp-BIAN)HNa(Et2O)2 complex (7), which was also characterized by spectroscopic methods. The structures of compounds 5 and 7 and free diimine dpp-BIAN were established by X-ray diffraction analysis.__________Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2634–2640, December, 2004.  相似文献   

18.
Binuclear cycloheptatrienylchromium carbonyls of the type (C7H7)2Cr2(CO)n (n = 6, 5, 4, 3, 2, 1, 0) have been investigated by density functional theory. Energetically competitive structures with fully bonded heptahapto η7-C7H7 rings are not found for (C7H7)2Cr2(CO)n structures having two or more carbonyl groups. This result stands in contrast to the related (CnHn)2M2(CO)n (M = Mn, n = 6; M = Fe, n = 5; M = Co, n = 4) systems. Most of the predicted (C7H7)2Cr2(CO)n structures have bent trihapto or pentahapto C7H7 rings and CrCr distances in the range 2.4–2.5 Å suggesting formal triple bonds. In some cases rearrangement of the heptagonal C7H7 ring to a tridentate cyclopropyldivinyl or tridentate bis(carbene)alkyl ligand is observed. In addition structures with CO insertion into the C7H7–Cr bond are predicted for (C7H7)2Cr2(CO)n (n = 6, 4, 2). The global minima found for the (C7H7)2Cr2(CO)n derivatives for n = 6, 5, and 4 are (η5-C7H7)(OC)2CrCr(CO)41-C7H7), (η3-C7H7)(OC)2CrCr(CO)32,1- C7H7), and (η5-C7H7)2Cr2(CO)4, respectively. The global minima for (C7H7)2Cr2(CO)n (n = 3, 2) have rearranged C7H7 groups. Singlet and triplet structures with heptahapto η7-C7H7 rings are found for the dimetallocenes (η7-C7H7)2Cr2(CO) and (η7-C7H7)2Cr2, with the singlet structures being of much lower energies in both cases.  相似文献   

19.
Summary.  Single crystals of MgAl2F8(H2O)2 have been obtained under hydrothermal conditions (250°C, 14 d) from a starting mixture of AlF3 and MgAlF5(H2O)2 in a 5% (w/w) HF solution. The crystal structure has been determined and refined from single crystal data (Fmmm (#69), Z = 4, a = 7.2691(7), b = 7.0954(16), c = 12.452(2) ?, 281 structure factors, 27 parameters, R(F 2 > 2σ (F 2)) = 0.0282, wR(F 2 all) = 0.0885). The obtained crystals were systematically twinned according to (010/100/001) as twinning matrix, reflecting the pseudo-tetragonal metric. The crystal structure is composed of perowskite-type layers built of corner sharing AlF6 octahedra with an overall composition of AlF4 which are connected via common fluorine atoms of [MgF4/2(H2O)2/1] octahedra. Group-subgroup relations of MgAl2F8(H2O)2 to WO3(H2O)0.33 and to other M(II)M(III)2 F8(H2O)2 structures are briefly discussed. Above 570°C, MgAl2F8(H2O)2 decomposes under elimination of water into α-AlF3, β-AlF3, and MgF2. Received October 29, 2001. Accepted (revised) December 6, 2001  相似文献   

20.
The present study illustrates the stability of [CpFe(CO)2(NCS)] and [CpFe(CO)2(SCN)] linkage isomers by the use of MPW1PW91 quantum method in the gas and solution phases. Our results reveal that the [CpFe(CO)2(NCS)] isomer is more stable than the [CpFe(CO)2(SCN)] isomer. Based on the polarizable continuum model, the effect of the solvent polarity on the stability, structural parameters, frontier orbital energies, and vibrational modes of carbonyl ligands (νCO) of these linkage complexes is explored. The molecular orbital analysis suggests that the major contributions to HOMO and LUMO arise from the ambidentate ligand and Fe in two isomers, respectively. In addition, the bonding interaction between the CpFe(CO)2 fragment and the ambidentate ligand is studied by means of the energy decomposition analysis. The back-bonding effect in Fe–CO bonds is revealed in the calculation of the quadrupole polarization of the carbon atom by the QTAIM analysis. The character of Fe–N and Fe–S bonds in these complexes is analyzed by the natural bond orbital analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号