首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have synthesized ditopic ligands L(1), L(2), and L(3) that contain two DO3A(3-) metal-chelating units with a xylene core as a noncoordinating linker (DO3A(3-) = 1,4,7,10-tetraazacyclododecane-1,4,7-triacetate; L(1) = 1,4-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(2) = 1,3-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzene; L(3) = 3,5-bis{[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododecane-1-yl]methyl}benzoic acid). Aqueous solutions of the dinuclear Gd(III) complexes formed with the three ligands have been investigated in a variable-temperature, multiple-field (17)O NMR and (1)H relaxivity study. The (17)O longitudinal relaxation rates measured for the [Gd(2)L(1-3)(H2O)(2)] complexes show strong field dependence (2.35-9.4 T), which unambiguously proves the presence of slowly tumbling entities in solution. The proton relaxivities of the complexes, which are unexpectedly high for their molecular weight, and in particular the relaxivity peaks observed at 40-50 MHz also constitute experimental evidences of slow rotational motion. This was explained in terms of self-aggregation related to hydrophobic interactions, pi stacking between the aromatic linkers, or possible hydrogen bonding between the chelates. The longitudinal (17)O relaxation rates of the [Gd(2)L(1-3)(H2O)(2)] complexes have been analysed with the Lipari-Szabo approach, leading to local rotational correlation times tau(1)(298) of 150-250 ps and global rotational correlation times tau(g)(298) of 1.6-3.4 ns (c(Gd): 20-50 mM), where tau(1)(298) is attributed to local motions of the Gd segments, while tau(g)(298) describes the overall motion of the aggregates. The aggregates can be partially disrupted by phosphate addition; however, at high concentrations phosphate interferes in the first coordination sphere by replacing the coordinated water. In contrast to the parent [Gd(DO3A)(H2O)(1.9)], which presents a hydration equilibrium between mono- and dihydrated species, a hydration number of q = 1 was established for the [Ln(2)L(1-3)(H2O)(2)] chelates by (17)O chemical shift measurements on Ln = Gd and UV/Vis spectrophotometry for Ln = Eu. The exchange rate of the coordinated water is higher for [Gd(2)L(1-3)(H2O)(2)] complexes k(ex)(298) = 7.5-12.0 x 10(6) s(-1)) than for [Gd(DOTA)(H2O)](-). The proton relaxivity of the [Gd(2)L(1-3)(H2O)(2)] complexes strongly decreases with increasing pH. This is related to the deprotonation of the inner-sphere water, which has also been characterized by pH potentiometry. The protonation constants determined for this process are logK(OH) = 9.50 and 10.37 for [Gd(2)L(1)(H2O)(2)] and [Gd(2)L(3)(H2O)(2)], respectively.  相似文献   

2.
A novel ligand, H(12)L, based on a trimethylbenzene core bearing three methylenediethylenetriamine-N,N,N',N'-tetraacetate moieties (-CH(2)DTTA(4-)) for Gd(3+) chelation has been synthesized, and its trinuclear Gd(3+) complex [Gd(3)L(H(2)O)(6)](3-) investigated with respect to MRI contrast agent applications. A multiple-field, variable-temperature (17)O NMR and proton relaxivity study on [Gd(3)L(H(2)O)(6)](3-) yielded the parameters characterizing water exchange and rotational dynamics. On the basis of the (17)O chemical shifts, bishydration of Gd(3+) could be evidenced. The water exchange rate, k(ex)(298)=9.0+/-3.0 s(-1) is around twice as high as k(ex)(298) of the commercial [Gd(DTPA)(H(2)O)](2-) and comparable to those on analogous Gd(3+)-DTTA chelates. Despite the relatively small size of the complex, the rotational dynamics had to be described with the Lipari-Szabo approach, by separating global and local motions. The difference between the local and global rotational correlation times, tau(lO)(298)=170+/-10 ps and tau(gO)(298)=540+/-100 ps respectively, shows that [Gd(3)L(H(2)O)(6)](3-) is not fully rigid; its flexibility originates from the CH(2) linker between the benzene core and the poly(amino carboxylate) moiety. As a consequence of the two inner-sphere water molecules per Gd(3+), their close to optimal exchange rate and the appropriate size and limited flexibility of the molecule, [Gd(3)L(H(2)O)(6)](3-) has remarkable proton relaxivities when compared with commercial contrast agents, particularly at high magnetic fields (r(1)=21.6, 17.0 and 10.7 mM(-1)s(-1) at 60, 200 and 400 MHz respectively, at 25 degrees C; r(1) is the paramagnetic enhancement of the longitudinal water proton relaxation rate, referred to 1 mM concentration of Gd(3+)).  相似文献   

3.
The synthesis and the characterization of a series of DTPA-bis(amide) conjugates of tranexamic acid (L1), its esters (L2-L6), and their Gd(III) complexes of the type [Gd(L)(H2O)].nH2O (L = L1-L6) are described. Except for the case of , all Gd-complexes exhibit greatly enhanced R1 relaxivity. Highest R1 reaches up to 12.9 mM(-1) s(-1) for [Gd(L2)(H2O)]. Such high relaxivity is reflected in the intensity enhancement of the in vivo MRI study on H-ras transgenic mice bearing hepatic tumor when employing [Gd(L2)(H2O)] as an MRI contrast agent. Thermodynamic stability constants, conditional stability constants, and the pM values demonstrate higher stability of [Gd(L)(H2O)].nH2O (L =L1-L6) than Omniscan under physiological conditions. The MTT assay performed on these complexes reveals cytotoxicity as low as that for Omniscan in the concentration range required to obtain intensity enhancement in the in vivo MRI study.  相似文献   

4.
A novel dodecanuclear complex, [{(HL)(L)(DMF)Cu(II)Gd(III)(DMF)(H(2)O)}(6)]·6DMF (1; DMF = N,N-dimethylformamide), has been obtained using the ligand resulting from the condensation of 3-formylsalicylic acid with hydroxylamine (H(3)L). The exchange interaction between the phenoxo-bridged Cu(II) and Gd(III) ions is weak ferromagnetic (J = +1.01 cm(-1)). The combination of a high-spin ground state with small anisotropy leads to a significant magnetocaloric effect [-ΔS(m)(0-7 T) = 23.5 J K g(-1) K(-1) at ~2 K].  相似文献   

5.
Ou MH  Tu CH  Tsai SC  Lee WT  Liu GC  Wang YM 《Inorganic chemistry》2006,45(1):244-254
Two novel derivatives of TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid), TTDA-BOM and TTDA-N'-BOM, each having a benzyloxymethyl group, were synthesized. (17)O NMR longitudinal and transverse relaxation rates and chemical shifts of aqueous solutions of their Gd(III) complexes were measured at variable temperature with a magnetic field strength of 9.4 T. The water exchange rate (k(ex)(298)) values for [Gd(TTDA-BOM)(H(2)O)](2-) (117 x 10(6) s(-1)) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) (131 x 10(6) s(-1)) are significantly higher than those of [Gd(DTPA)(H(2)O)](2-) (4.1 x 10(6) s(-1)) and [Gd(BOPTA)(H(2)O)](2-) (3.45 x 10(6) s(-1)). The rotational correlation time (tau) values for [Gd(TTDA-BOM)(H(2)O)](2-) (119 ps) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) (125 ps) are higher than those of [Gd(DTPA)(H(2)O)](2-) (103 ps) and [Gd(TTDA)(H(2)O)](2-) (104 ps). The stepwise stoichiometric binding constants of [Gd(TTDA-BOM)(H(2)O)](2)(-) and [Gd(TTDA-N'-BOM)(H(2)O)](2)(-) bound to HSA are obtained by ultrafiltration studies. Fluorescent probe displacement studies exhibit that [Gd(TTDA-BOM)(H(2)O)](2-) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) can displace dansylsarcosine from HSA with inhibition constants (K(i)) of 1900 and 1600 microM, respectively; however, they are not able to displace warfarin. These results indicate that [Gd(TTDA-BOM)(H(2)O)](2-) and [Gd(TTDA-N'-BOM)(H(2)O)](2-) have a weak binding to site II on HSA. In addition, the mean bound relaxivity (r(1b)) and bound relaxivity (r(1)(b)) values for the [Gd(TTDA-BOM)(H(2)O)](2-)/HSA and [Gd(TTDA-N'-BOM)(H(2)O)](2-)/HSA adducts are obtained by ultrafiltration and relaxivity studies, respectively. The bound relaxivity of these adducts values are significantly higher than those of [Gd(BOPTA)(H(2)O)](2-)/HSA and [Gd(DTPA-BOM(3))(H(2)O)](2-)/HSA. These results also suggest that bound relaxivity is site dependent. In binding sites studies of Gd(III) chelates to HSA, a significant decrease of the relaxation rates (R(1obs)) was observed for the [Eu(TTDA-BOM)(H(2)O)](2-) complex which was added to the [Gd(TTDA-N'-BOM)(H(2)O)](2-)/HSA solution, and this indicated that these Gd(III) complexes share the same HSA binding site. Finally, as measured by the Zn(II) transmetalation process, the kinetic stability of these Gd(III) complexes are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)].  相似文献   

6.
The present study was designed to exploit optimum lipophilicity and high water-exchange rate (k(ex)) on low molecular weight Gd(III) complexes to generate high bound relaxivity (r(1)(b)), upon binding to the lipophilic site of human serum albumin (HSA). Two new carbon backbone modified TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid) derivatives, CB-TTDA and Bz-CB-TTDA, were synthesized. The complexes [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) both display high stability constant (log K(GdL) = 20.28 and 20.09, respectively). Furthermore, CB-TTDA (log K(Gd/Zn) = 4.22) and Bz-CB-TTDA (log K(Gd/Zn) = 4.12) exhibit superior selectivity of Gd(III) against Zn(II) than those of TTDA (log K(Gd/Zn) = 2.93), EPTPA-bz-NO(2) (log K(Gd/Zn) = 3.19), and DTPA (log K(Gd/Zn) = 3.76). However, the stability constant values of [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are lower than that of MS-325. The parameters that affect proton relaxivity have been determined in a combined variable temperature (17)O NMR and NMRD study. The water exchange rates are comparable for the two complexes, 232 × 10(6) s(-1) for [Gd(CB-TTDA)(H(2)O)](2-) and 271 × 10(6) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-). They are higher than those of [Gd(TTDA)(H(2)O)](2-) (146 × 10(6) s(-1)), [Gd(DTPA)(H(2)O)](2-) (4.1 × 10(6) s(-1)), and MS-325 (6.1 × 10(6) s(-1)). Elevated stability and water exchange rate indicate that the presence of cyclobutyl on the carbon backbone imparts rigidity and steric constraint to [Gd(CB-TTDA)(H(2)O)](2-)and [Gd(Bz-CB-TTDA)(H(2)O)](2-). In addition, the major objective for selecting the cyclobutyl is to tune the lipophilicity of [Gd(Bz-CB-TTDA)(H(2)O)](2-). The binding affinity of [Gd(Bz-CB-TTDA)(H(2)O)](2-) to HSA was evaluated by ultrafiltration study across a membrane with a 30 kDa MW cutoff, and the first three stepwise binding constants were determined by fitting the data to a stoichiometric model. The binding association constants (K(A)) for [Gd(CB-TTDA)(H(2)O)](2-) and [Gd(Bz-CB-TTDA)(H(2)O)](2-) are 1.1 × 10(2) and 1.5 × 10(3), respectively. Although the K(A) value for [Gd(Bz-CB-TTDA)(H(2)O)](2-) is lower than that of MS-325 (K(A) = 3.0 × 10(4)), the r(1)(b) value, r(1)(b) = 66.7 mM(-1) s(-1) for [Gd(Bz-CB-TTDA)(H(2)O)](2-), is significantly higher than that of MS-325 (r(1)(b) = 47.0 mM(-1) s(-1)). As measured by the Zn(II) transmetalation process, the kinetic stabilities of [Gd(CB-TTDA)(H(2)O)](2-), [Gd(Bz-CB-TTDA)(H(2)O)](2-), and [Gd(DTPA)(H(2)O)](2-) are similar and are significantly higher than that of [Gd(DTPA-BMA)(H(2)O)](2-). High thermodynamic and kinetic stability and optimized lipophilicity of [Gd(CB-TTDA)(H(2)O)](2-) make it a favorable blood pool contrast agent for MRI.  相似文献   

7.
A novel DTPA-tris(amide) derivative ligand, DTPA-N,N'-bis[bis(n-butyl)]-N'-methyl-tris(amide)(H2L3) was synthesized. With Gd3+, it forms a positively charged [Gd(L3)]+ complex, whereas with Cu2+ and Zn2+ [ML3], [MHL3]+ and [M2L3]2+ species are formed. The protonation constants of H2L3 and the stability constants of the complexes were determined by pH potentiometry. The stability constants are lower than those for DTPA-N,N'-bis[bis(n-butyl)amide)](H3L2), due to the lower negative charge and reduced basicity of the amine nitrogens in (L3)2-. The kinetic stability of [Gd(L3)]+ was characterised by the rates of metal exchange reactions with Eu3+, Cu2+ and Zn2+. The exchange reactions, which occur via proton and metal ion assisted dissociation of [Gd(L3)]+, are significantly slower than for [Gd(DTPA)]2-, since the amide groups cannot be protonated and interact only weakly with the attacking metal ions. The relaxivities of [Gd(L2)] and [Gd(L3)]+ are constant between 10-20 degrees C, indicating a relatively slow water exchange. Above 25 degrees C, the relaxivities decrease, similarly to other Gd3+ DTPA-bis(amide) complexes. The pH dependence of the relaxivities for [Gd(L3)]+ shows a minimum at pH approximately 9, thus differs from the behaviour of Gd3+-DTPA-bis(amides) which have constant relaxivities at pH 3-8 and an increase below and above. The water exchange rates for [Gd(L2)(H2O)] and [Gd(L3)(H2O)]+, determined from a variable temperature (17)O NMR study, are lower than that for [Gd(DTPA)(H2O)]2-. This is a consequence of the lower negative charge and decreased steric crowding at the water binding site in amides as compared to carboxylate analogues. Substitution of the third acetate of DTPA5- with an amide, however, results in a less pronounced decrease in kex than substitution of the first two acetates. The activation volumes derived from a variable pressure (17)O NMR study prove a dissociative interchange and a limiting dissociative mechanism for [Gd(L2)(H2O)] and [Gd(L3)(H2O)]+, respectively.  相似文献   

8.
Kou HZ  Gao S  Li CH  Liao DZ  Zhou BC  Wang RJ  Li Y 《Inorganic chemistry》2002,41(18):4756-4762
Two cyano-bridged Gd(III)-Cr(III) complexes [Gd(urea)(4)(H(2)O)(2)](2)[Cr(CN)(6)](2) (1) and ([Gd(capro)(2)(H(2)O)(4)Cr(CN)(6)].H(2)O)(n)(2) (capro represents caprolactam) have been synthesized and characterized structurally and magnetically. Complex 1 has a tetranuclear Gd(2)Cr(2) square structure, in which two cis-CN(-) ligands of each [Cr(CN)(6)] link two [Gd(urea)(4)(H(2)O)(2)] groups and in turn, two [Gd(urea)(4)(H(2)O)(2)] link two [Cr(CN)(6)] in a cis fashion. Complex 2 is composed of 1D chains with alternating [Gd(capro)(2)(H(2)O)(4)] and [Cr(CN)(6)] moieties connected by the trans-CN(-) ligands of [Cr(CN)(6)]. The dehydration of 2 at 120 degrees C generates a new complex, [Gd(capro)(2)(H(2)O)(2)Cr(CN)(6)] (2'). Magnetic studies show the existence of antiferromagnetic Gd(III)-Cr(III) interaction in these complexes. On the basis of the tetranuclear model, the magnetic susceptibilities of 1 have been analyzed giving the intermetallic magnetic coupling constant of -0.36 cm(-1). Complex 2' exhibits a ferrimagnetic order below 2.1 K. Interestingly, 2' is quite soluble in water, and slow evaporation of the solution gives the hydrated complex 2. Therefore, 2' is a soluble molecular magnet, and this significant behavior implies potential applications. Isothermal magnetization measurements of 2' and other cyano-bridged Gd(III)-Cr(III) molecular magnets show unusual field-induced metamagnetic behavior from the ferrimagnetic ground state to the ferromagnetic state. Field dependence of magnetization of the cyano-bridged Gd(III)-Cr(III) complexes shows unusual field-induced metamagnetic behavior from the ferrimagnetic ground state to the ferromagnetic state.  相似文献   

9.
Three novel phosphorus-containing analogues of H(5)DTPA (DTPA = diethylenetriaminepentaacetate) were synthesised (H6L1, H5L2, H5L3). These compounds have a -CH2-P(O)(OH)-R function (R = OH, Ph, CH2NBn2) attached to the central nitrogen atom of the diethylenetriamine backbone. An NMR study reveals that these ligands bind to lanthanide(III) ions in an octadentate fashion through the three nitrogen atoms, a P-O oxygen atom and four carboxylate oxygen atoms. The complexed ligand occurs in several enantiomeric forms due to the chirality of the central nitrogen atom and the phosphorus atom upon coordination. All lanthanide complexes studied have one coordinated water molecule. The residence times (tau(M)298) of the coordinated water molecules in the gadolinium(III) complexes of H6L1 and H5L2 are 88 and 92 ns, respectively, which are close to the optimum. This is particularly important upon covalent and noncovalent attachment of these Gd(3+) chelates to polymers. The relaxivity of the complexes studied is further enhanced by the presence of at least two water molecules in the second coordination sphere of the Gd(3+) ion, which are probably bound to the phosphonate/phosphinate moiety by hydrogen bonds. The complex [Gd(L3)(H2O)](2-) shows strong binding ability to HSA, and the adduct has a relaxivity comparable to MS-325 (40 s(-1) mM(-1) at 40 MHz, 37 degrees C) even though it has a less favourable tau(M) value (685 ns). Transmetallation experiments with Zn(2+) indicate that the complexes have a kinetic stability that is comparable to-or better than-those of [Gd(dtpa)(H2O)](2-) and [Gd(dtpa-bma)(H2O)].  相似文献   

10.
Dinuclear [(NiL)Gd(hfac)(2)(EtOH)](H(3)L = 1,1,1-tris(N-salicylideneaminomethyl)ethane, Hhfac = hexafluoroacetylacetone), trinuclear [(NiL)(2)Gd(NO(3))], and tetranuclear [(NiL)Gd(CH(3)CO(2))(2)(MeOH)](2) complexes, were prepared by treating [Ni(HL)] with [Gd(hfac)(3)(H(2)O)(2)], Gd(NO(3))(3).6H(2)O, and Gd(CH(3)CO(2))(3).4H(2)O, respectively, in the presence of Et(3)N. All the complexes show that ferromagnetic interactions occur between the Ni(II) and Gd(III) ions.  相似文献   

11.
The ion-nuclear distance of Gd(III) to a coordinated water proton, r(Gd)(-)(H), is central to the understanding of the efficacy of gadolinium-based MRI contrast agents. The dipolar relaxation mechanism operative for contrast agents has a 1/r(6) dependence. Estimates in the literature for this distance span 0.8 A (2.5-3.3 A). This study describes a direct determination of r(Gd)(-)(H) using the anisotropic hyperfine constant T( perpendicular ) determined from pulsed ENDOR spectra. Five Gd(III) complexes were examined: [Gd(H(2)O)(8)](3+), [Gd(DTPA)(H(2)O)](2)(-), [Gd(BOPTA)(H(2)O)](2)(-), MS-325, and [Gd(HP-DO3A)(H(2)O)]. The distance, r(Gd)(-)(H), was the same within error for all five complexes: 3.1 +/- 0.1 A. These distance estimates should aid in the design of new contrast agents, and in the interpretation of other molecular factors influencing relaxivity.  相似文献   

12.
For this study, the N'-monoamide derivatives of TTDA (3,6,10-tri(carboxymethyl)-3,6,10-triazadodecanedioic acid), N'-methylamide (TTDA-MA), N'-benzylamide (TTDA-BA), and N'-2-methoxybenzylamide (TTDA-MOBA), were synthesized. Their protonation constants and stability constants (log K(ML)'s) formed with Ca(2+), Zn(2+), Cu(2+), and Gd(3+) were determined by potentiometric titration in 0.10 M Me(4)NCl at 25.0 +/- 0.1 degrees C. The relaxivity values of [Gd(TTDA-MA)](-), [Gd(TTDA-BA)](-), and [Gd(TTDA-MOBA)](-) remained constant with respect to pH changes over the range 4.5-12.0. The (17)O NMR chemical shift of H(2)O induced by [Dy(TTDA-MA)(H(2)O)](-) at pH 6.80 showed 0.9 inner-sphere water molecules. Water proton relaxivity values for [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) at 37.0 +/- 0.1 degrees C and 20 MHz are 3.89, 4.21, and 4.25, respectively. The water-exchange lifetime (tau(M)) and rotational correlation time (tau(R)) of [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) are obtained from reduced the (17)O relaxation rate and chemical shifts of H(2)(17)O. The (2)H NMR longitudinal relaxation rates of the deuterated diamagnetic lanthanum complexes for the rotational correlation time were also thoroughly investigated. The water-exchange rates (K(298)(ex) for [Gd(TTDA-MA)(H(2)O)](-), [Gd(TTDA-BA)(H(2)O)](-), and [Gd(TTDA-MOBA)(H(2)O)](-) are lower than that of [Gd(TTDA)(H(2)O)](2)(-) but significantly higher than those of [Gd(DTPA)(H(2)O)](2)(-) and [Gd(DTPA-BMA)(H(2)O)]. The rotational correlation times for [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) are significantly longer than those of [Gd(TTDA)(H(2)O)](2)(-) and [Gd(DTPA)(H(2)O)](2)(-) complexes. The marked increase of the relaxivity of [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) results mainly from their longer rotational correlation time. The noncovalent interaction between human serum albumin (HSA) and [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) complexes containing a hydrophobic substituent was investigated by measuring the water proton relaxation rate of the aqueous solutions. The binding association constant (K(A)) values are 1.0 +/- 0.2 x 10(3) and 1.3 +/- 0.2 x 10(3) M(-1) for [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-), which indicates a stronger interaction of [Gd(TTDA-BA)(H(2)O)](-) and [Gd(TTDA-MOBA)(H(2)O)](-) with HSA.  相似文献   

13.
To study the physicochemical properties of the DTTA chelating moiety (H4DTTA = diethylenetriaminetetraacetic acid = N,N'-[iminobis(ethane-2,1-diyl)]bis[N-(carboxymethyl)glycine]), used in several compounds proposed as magnetic resonance imaging (MRI) contrast agents, the methylated derivative H4DTTA-Me (N,N'-[(methylimino)bis(ethane-2,1-diyl)]bis[N-(carboxymethyl)glycine]) was synthesized. Protonation constants of the ligand were determined in an aqueous solution by potentimetry and (1)H NMR pH titration and compared to various DTTA derivatives. Stability constants were measured for the chelates formed with Gd(3+) (log K(GdL) = 18.60 +/- 0.10) and Zn(2+) (log K(ZnL) = 17.69 +/- 0.10). A novel approach of determining the relative conditional stability constant of two paramagnetic complexes in a direct way by (1)H NMR relaxometry is presented and was used for the Gd(3+) complexes [Gd(DTTA-Me)(H2O)2](-) (L1) and [Gd(DTPA-BMA)(H2O)] (L2) [K(L1/L2)*(at pH 8.3, 25 degrees C) = 6.4 +/- 0.3]. The transmetalation reaction of the Gd(3+) complex with Zn(2+) in a phosphate buffer solution (pH 7.0) was measured to be twice as fast for [Gd(DTTA-Me)(H2O)2](-) in comparison to that for [Gd(DTPA-BMA)(H2O)]. This can be rationalized by the higher affinity of Zn(2+) toward DTTA-Me(4-) if compared to DTPA-BMA(3-). The formation of a ternary complex with L-lactate, which is common for DO3A-based heptadentate complexes, has not been observed for [Gd(DTTA-Me)(H2O)2](-) as monitored by (1)H NMR relaxometric titrations. From the results, it was concluded that the heptadentate DTTA-Me(4-) behaves similarly to the commercial octadentate DTPA-BMA(3-) with respect to stability. The use of [Gd(DTTA-Me)(H2O)2](-) as an MRI contrast agent in vitro and in animal studies is conceivable, mainly at high magnetic fields, where an increase of the inner-sphere-coordination water actually seems to be the most certain way to increase the relaxivity.  相似文献   

14.
On the basis of structural considerations in the inner sphere of nine-coordinate, monohydrated Gd(III) poly(aminocarboxylate) complexes, we succeeded in accelerating the water exchange by inducing steric compression around the water binding site. We modified the common DTPA(5-) ligand (DTPA=(diethylenetriamine-N,N,N',N",N"-pentaacetic acid) by replacing one (EPTPA(5-)) or two (DPTPA(5-)) ethylene bridges of the backbone by propylene bridges, or one coordinating acetate by a propionate arm (DTTA-prop(5-)). The ligand EPTPA(5-) was additionally functionalized with a nitrobenzyl linker group (EPTPA-bz-NO(2) (5-)) to allow for coupling of the chelate to macromolecules. The water exchange rate, determined from a combined variable-temperature (17)O NMR and EPR study, is two orders of magnitude higher on [Gd(eptpa-bz-NO(2))(H(2)O)](2-) and [Gd(eptpa)(H(2)O)](2-) than on [Gd(dtpa)(H(2)O)](2-) (k(ex)298=150x10(6), 330x10(6), and 3.3x10(6) s(-1), respectively). This is optimal for attaining maximum proton relaxivities for Gd(III)-based, macrocyclic MRI contrast agents. The activation volume of the water exchange, measured by variable-pressure (17)O NMR spectroscopy, evidences a dissociative interchange mechanism for [Gd(eptpa)(H(2)O)](2-) (DeltaV(not equal sign)=(+6.6+/-1.0) cm(3) mol(-1)). In contrast to [Gd(eptpa)(H(2)O)](2-), an interchange mechanism is proved for the macrocyclic [Gd(trita)(H(2)O)](-) (DeltaV (not equal sign)=(-1.5+/-1.0) cm(3) mol(-1)), which has one more CH(2) group in the macrocycle than the commercial MRI contrast agent [Gd(dota)(H(2)O)](-), and for which the elongation of the amine backbone also resulted in a remarkably fast water exchange. When one acetate of DTPA(5-) is substituted by a propionate, the water exchange rate on the Gd(III) complex increases by a factor of 10 (k(ex)298=31x10(6) s(-1)). The [Gd(dptpa)](2-) chelate has no inner-sphere water molecule. The protonation constants of the EPTPA-bz-NO(2) (5-) and DPTPA(5-) ligands and the stability constants of their complexes with Gd(III), Zn(II), Cu(II) and Ca(II) were determined by pH potentiometry. Although the thermodynamic stability of [Gd(eptpa-bz-NO(2))(H(2)O)](2-) is reduced to a slight extent in comparison with [Gd(dtpa)(H(2)O)](2-), it is stable enough to be used in medical diagnostics as an MRI contrast agent. Therefore both this chelate and [Gd(trita)(H(2)O)](-) are potential building blocks for the development of high-relaxivity macromolecular agents.  相似文献   

15.
To tune the lanthanide luminescence in related molecular structures, we synthesized and characterized a series of lanthanide complexes with imidazole-based ligands: two tripodal ligands, tris{[2-{(1-methylimidazol-2-yl)methylidene}amino]ethyl}amine (Me(3)L), and tris{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(3)L), and the dipodal ligand bis{[2-{(imidazol-4-yl)methylidene}amino]ethyl}amine (H(2)L). The general formulas are [Ln(Me(3)L)(H(2)O)(2)](NO(3))(3)·3H(2)O (Ln = 3+ lanthanide ion: Sm (1), Eu (2), Gd (3), Tb (4), and Dy (5)), [Ln(H(3)L)(NO(3))](NO(3))(2)·MeOH (Ln(3+) = Sm (6), Eu (7), Gd (8), Tb (9), and Dy (10)), and [Ln(H(2)L)(NO(3))(2)(MeOH)](NO(3))·MeOH (Ln(3+) = Sm (11), Eu (12), Gd (13), Tb (14), and Dy (15)). Each lanthanide ion is 9-coordinate in the complexes with the Me(3)L and H(3)L ligands and 10-coordinate in the complexes with the H(2)L ligand, in which counter anion and solvent molecules are also coordinated. The complexes show a screw arrangement of ligands around the lanthanide ions, and their enantiomorphs form racemate crystals. Luminescence studies have been carried out on the solid and solution-state samples. The triplet energy levels of Me(3)L, H(3)L, and H(2)L are 21?000, 22?700, and 23?000 cm(-1), respectively, which were determined from the phosphorescence spectra of their Gd(3+) complexes. The Me(3)L ligand is an effective sensitizer for Sm(3+) and Eu(3+) ions. Efficient luminescence of Sm(3+), Eu(3+), Tb(3+), and Dy(3+) ions was observed in complexes with the H(3)L and H(2)L ligands. Ligand modification by changing imidazole groups alters their triplet energy, and results in different sensitizing ability towards lanthanide ions.  相似文献   

16.
Rodenas LG  Liberman SJ 《Talanta》1991,38(3):313-318
The hydrolysis constants of Gd(3+) and the solubility products of Gd(OH)(3) and Gd(OD)(3) in nitrate solutions at 25 and 70 degrees in H(2)O and D(2)O have been determined because of their importance in nuclear technology. The constants are defined (charges omitted for clarity) as *K(11) = a(GdOH)a(H)/a(Gd), *K(21) = a(Gd(OH)(2))a(2)(H)/a(Gd), *K(SO) = a(Gd)/a(3)(H). The values for the H(2)O system were p*K(11) = 7.87 +/- 0.02, p*K(21) = 15.I6 +/- 0.09, p*K(SO) = -19.32 +/- 0.03 at 25 degrees and p*K(11) = 7.55 +/- 0.03, p*K(21) = 13.04 +/- 0.03, p*K(SO) = -16.16 +/- 0.04 at 70 degrees . For the D(2)O system they were p*K(D)(11) = 8.17 +/- 0.01, p*K(D)(21) = 16.00 +/- 0.09, p*K(D)(SO) = -21.18 +/- 0.04 at 25 degrees and p*K(D)(11) = 7.84 +/- 0.02, p*K(D)(21) = 13.95 +/- 0.02, p*K(D)(SO) = -17.34 +/- 0.04 at 70 degrees . The mean enthalpy changes of the reactions were also calculated.  相似文献   

17.
A DTPA-based chelate containing one phosphinate group was conjugated to a generation 5 polyamidoamine (PAMAM) dendrimer via a benzylthiourea linkage. The Gd(III) complex of this novel conjugate has potential as a contrast agent for magnetic resonance imaging (MRI). The chelates bind Gd3+via three nitrogen atoms, four carboxylates and one phosphinate oxygen, and one water molecule completes the inner coordination sphere. The monomer Gd(III) chelates bearing nitrobenzyl and aminobenzyl groups ([Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-) as well as the dendrimeric Gd(III) complex G5-(Gd(DTTAP))63) were studied by multiple-field, variable temperature 17O and 1H NMR. The rate of water exchange is faster than that of [Gd(DTPA)(H2O)]2- and very similar on the two monomeric complexes (8.9 and 8.3 x 10(6) s-1 for [Gd(DTTAP-bz-NO2)(H2O)]2- and [Gd(DTTAP-bz-NH2)(H2O)]2-, respectively), while it is decreased on the dendrimeric conjugate (5.0 x 10(6) s-1). The Gd(III) complex of the dendrimer conjugate has a relaxivity of 26.8 mM-1 s-1 at 37 degrees C and 0.47 T (corresponding to 1H Larmor frequency of 20 MHz). Given the contribution of the second sphere water molecules to the overall relaxivity, this value is slightly higher than those reported for similar size dendrimers. The experimental 17O and 1H NMR data were fitted to the Solomon-Bloembergen-Morgan equations extended with a contribution from second coordination sphere water molecules. The rotational dynamics of the dendrimeric conjugate was described in terms of global and local motions with the Lipari-Szabo approach.  相似文献   

18.
Heteropolynuclear organometallic compounds have been constructed by using two kinds of ferrocene-based ligands, 1,1'-ferrocenedicarboxylic acid (H(2)L(1)) and ferrocenecarboxylic acid (HL(2)). Reactions the ligand H(2)L(1) with copper(II) and nickel(II) salts, in the presence of pyridine, give a tetranuclear Cu(2)Fe(2) mixed-metallic box Cu(2)L(1)(2)(Py)(2)(DMF)(2)(H(2)O)(2) (1) and a tetranuclear heterobimetallic helix Ni(2)L(1)(2)(Py)(4)(H(2)O) (2), respectively. In these complexes, the ferrocene moieties show cisoid conformations which lead to the formation of the finite coordination geometry, i.e. to molecular complexes. Interactions of the ligand H(2)L(1) with lanthanide ions afford two-dimensional networks [La(2)L(1)(3)(CH(3)OH)(4)]( infinity ) (3), [Eu(2)L(1)(3)(H(2)O)(5)]( infinity ) (4), and [Gd(2)L(1)(3)(CH(3)OH)(2)(H(2)O)(3)]( infinity ) (5), respectively, in which transoid conformations of the ferrocene moiety provide opportunities to form infinite 2-D networks. It is suggested that the conformational freedom of the ferrocene moiety makes the ligand L(1) display different conformations and coordination modes in these complexes. In addition, the pi.pi interactions related to the ferrocene moieties were also found to stabilize the supramolecular architectures in the solid state. As a comparison, reaction of lanthanide ions with the ligand HL(2) resulted in three isostructural heterodinuclear windmill-shaped compounds Ln(2)L(2)(6)(CH(3)OH)(2)(H(2)O)(5) [Ln = La (6), Eu (7), and Gd (8)] by simply diffusing the solutions of lanthanide ions into the mixture of HL(2) and NaOH, respectively. Electrochemical properties of the ferrocene-containing complexes 1-8 are also investigated in the solution or solid state.  相似文献   

19.
In the objective of optimizing water exchange rate on stable, nine-coordinate, monohydrated Gd(III) poly(amino carboxylate) complexes, we have prepared monopropionate derivatives of DOTA4- (DO3A-Nprop4-) and DTPA5- (DTTA-Nprop5-). A novel ligand, EPTPA-BAA(3-), the bisamylamide derivative of ethylenepropylenetriamine-pentaacetate (EPTPA5-) was also synthesized. A variable temperature 17O NMR study has been performed on their Gd(III) complexes, which, for [Gd(DTTA-Nprop)(H2O)]2- and [Gd(EPTPA-BAA)(H2O)] has been combined with multiple field EPR and NMRD measurements. The water exchange rates, k(ex)(298), are 8.0 x 10(7) s(-1), 6.1 x 10(7) s(-1) and 5.7 x 10(7) s(-1) for [Gd(DTTA-Nprop)(H2O)]2-, [Gd(DO3A-Nprop)(H2O)]- and [Gd(EPTPA-BAA)(H2O)], respectively, all in the narrow optimal range to attain maximum proton relaxivities, provided the other parameters (electronic relaxation and rotation) are also optimized. The substitution of an acetate with a propionate arm in DTPA5- or DOTA4- induces increased steric compression around the water binding site and thus leads to an accelerated water exchange on the Gd(III) complex. The k(ex) values on the propionate complexes are, however, lower than those obtained for [Gd(EPTPA)(H2O)]2- and [Gd(TRITA)(H2O)]- which contain one additional CH(2) unit in the amine backbone as compared to the parent [Gd(DTPA)(H2O)]2- and [Gd(DOTA)(H2O)]-. In addition to their optimal water exchange rate, [Gd(DTTA-Nprop)(H2O)]2- has, and [Gd(DO3A-Nprop)(H2O)]- is expected to have sufficient thermodynamic stability. These properties together make them prime candidates for the development of high relaxivity, macromolecular MRI contrast agents.  相似文献   

20.
Three enantiopure isostructural sandwich-type clusters, Ln(III)(3)Mn(III)(6) (Ln = Dy (1), Tb (2) and Gd (3)) have been synthesized through reactions of a chiral Schiff-base ligand ((S,E)-4-(2-hydroxybenzylideneamino)-2-hydroxybutanoic acid, H(3)L) with manganese and lanthanide ions, showing intramolecular antiferromagnetic interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号