首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ultraviolet A (UVA)-irradiated 4'-hydroxymethyl-4,5',8-trimethyl psoralen (HMT) in the presence of a poly-dT(17) and dA(7) TTA(8) oligonucleotides produces HMT-dT(17) and HMT-dA(7) TTA(8) adducts in aqueous solution. In this article, we determine whether these HMT-dT(17) and HMT-dA(7) TTA(8) adducts can be detected with a molecular beacon (MB) probe. We measure the degree of damage in dT(17) and dA(7) TTA(8) solutions containing UVA-activated HMT via monitoring the decrease in MB fluorescence. Photoproduct formation is confirmed by MALDI-TOF MS (matrix-assisted laser desorption/ionization time-of-fight mass spectrometry measurements) and absorption spectroscopy. The MB fluorescence decreases upon UVA irradiation in the presence of HMT with a single-exponential time constants of 114.2 ± 6.5 min for HMT-dT(17) adducts and 677.8 ± 181.8 min for HMT-dA(7) TTA(8) adducts. Our results show that fluorescent MB probes are a selective, robust and accurate tool for detecting UVA-activated HMT-induced DNA damage.  相似文献   

2.
Radioimmunoassays were used to investigate the repair of cyclobutane pyrimidine dimers and pyrimidine (6-4)pyrimidone photoproducts ((6-4] photoproducts) in the epidermis of the South American opossum, Monodelphis domestica. In the absence of photoreactivating light, both types of photodamage were excised with similar kinetics, 50% of the damage remaining 8 h after UV irradiation in vivo. Exposure of UV-irradiated skin to photoreactivating light resulted in removal of most of the cyclobutane dimers and an enhanced rate of (6-4) photoproduct repair. Photoenhanced excision repair of non-dimer damage increases the range of biologically effective lesions removed by in vivo photoreactivation.  相似文献   

3.
An investigation into the influence of UV irradiation on elastin hydrolysates dissolved in water was carried out using UV-Vis spectroscopy and spectrofluorometry. It was found that the absorption of elastin hydrolysates in solution increased during irradiation of the sample. For fluorescence of elastin hydrolysates we observed both, a decrease and increase of this value during irradiation of the sample. After UV irradiation of the elastin solution we observed a minor increase of overall absorption, most notably between 250 nm and 280 nm. Moreover, after UV irradiation a wide peak emerged between 290 nm and 310 nm with maximum at about 305 nm. The new peak suggests that new photoproducts are formed during UV irradiation of elastin hydrolysates. The fluorescence of elastin hydrolysates was observed at 305 nm and at 380 nm after excitation at 270 nm. UV irradiation caused fluorescence fading at 305 nm and 380 nm. After 30 min of irradiation a new broad weak band of fluorescence, attributable to new photoproducts, emerged in the UV wavelength region with emission maximum between 400 nm and 500 nm.  相似文献   

4.
Trp–DNA adducts resulting from UV irradiation of pyrimidine bases and nucleotides in the presence of tryptophan (Trp) have been the subject of previous research. However, the relative yield of the adducts compared with the UV screening effect of Trp has not been previously considered. To determine whether Trp–DNA adduct formation or absorption “screening” by Trp is the predominant process when DNA solutions are irradiated with UV light in the presence of Trp, we irradiated Trp-containing DNA oligonucleotide solutions with UVC light and incubated aliquots of those solutions with molecular beacons (MBs) to detect the damage. We observed a rapid decay of fluorescence of the MBs for pure DNA solutions, thereby indicating damage. However, in the presence of Trp, the fluorescence decay is prolonged, with time constants that increase exponentially with Trp concentration. The results are discussed in terms of a beneficial in vivo cellular protection rather than harmful adduct formation and suggest a net sacrificial absorption of UV light by Trp which actually protects the DNA from UV damage.  相似文献   

5.
Halogenoquinolones are potent and widely used antimicrobials blocking microbial DNA synthesis. However, they induce adverse photoresponses through the absorption of UV light, including phototoxicity and photocarcinogenicity. The phototoxic responses may be the result of photosensitization of singlet oxygen, production of free radicals and/or other reactive species resulting from photodehalogenation. Here, we report the use of laser scanning confocal microscopy to detect and to follow the fluorescence changes of one monohalogenated and three di-halogenated quinolones in live human epidermal keratinocyte cells during in situ irradiation by confocal laser in real time. Fluorescence image analysis and co-staining with the LysoTracker probe showed that lysosomes are a preferential site of drug localization and phototransformations. As the lysosomal environment is relatively acidic, we also determined how low pH may affect the dehalogenation and concomitant fluorescence. With continued UV irradiation, fluorescence increased in the photoproducts from BAY y3118 and clinafloxacin, whereas it decreased for lomefloxacin and moxifloxacin. Our images not only help to localize these phototoxic agents in the cell, but also provide means for dynamic monitoring of their phototransformations in the cellular environment.  相似文献   

6.
Ultraviolet (UV) irradiation was used to obtain fluorescent photoproducts from four non-fluorescent benzoylurea (BU) insecticides (flufenoxuron (FLF), lufenuron (LUF), hexaflumuron (HF) and triflumuron (TRF)). The effect of solvent, pH (in aqueous solutions), organic solvent percentage and UV irradiation time on the excitation and emission wavelengths and fluorescence intensity were investigated. The largest fluorescence signals and the shortest UV irradiation time were obtained in methanol, ethanol and 2-propanol. Linear calibration graphs were established in the interval between 0.025 and 1.000 microg ml(-1) from FLF and TRF and between 0.050 and 1.000 microg ml(-1) from LUF and HF with regression coefficients larger than 0.99. A method based on the use of the first-derivative of the spectra of photoproducts was applied to the determination of BU insecticides in river water samples and in technical formulations. The mean recoveries ranged from 95.0% to 110.0% in river water samples and from 92.0% to 101.0% in technical formulations, according to the compound. A preconcentration step, using LLE, allowed to reach the concentration levels established by the EU directive for pesticides in drinking water.  相似文献   

7.
Methylene blue (MB+) is a well-known dye in medicine and has been discussed as an easily applicable drug for topical treatment in photodynamic therapy (PDT). Methylene blue can potentially be used as a redox indicator to detect the important redox reactions that are induced during PDT. The kinetics of this process was analyzed on a subcellular level with confocal laser scanning microscopy. BKEz-7 endothelial cells were incubated 4 h with 1 microM MB+. The fluorescence dynamics of MB+ during irradiation with 633 nm light was observed with subcellular resolution. Images were acquired at 0.5 s intervals (frame rate 1 image/0.5 s). Fluorescence was observed in the red channel of the laser scanning microscope. Synchronously, the phase-contrast image was visualized with the green channel. Morphological changes could therefore be correlated with the dynamics of MB+. In addition, the light-dose-dependent phototoxicity at 633 nm irradiation was determined by viable cell counting. After an induction period (phase I), fast fluorescent spikes could be observed in the whole cytoplasm, which decayed with a time constant of about 20 s (phase II), followed by a period of nearly constant fluorescence intensity (phase III) and exponential photobleaching (phase IV). Phase II exhibits highly nonlinear kinetics, which is hypothesized to correlate probably with a nonlinear quantal production of reactive oxygen species (ROS). Morphological cell changes were not observed during phase II. During phase III, a pycnotic cell nucleus developed. From the determination of viable cells we can conclude that a light dose applied within phase II was only sublethal in correlation with morphological observations. Overproduction of ROS leading finally to cell killing during phases III and IV is discussed.  相似文献   

8.
SnO nanoparticles have been successfully synthesized in the presence of Triton-X 100 (TX-100) surfactant via hydrothermal method for the first time, and the photocatalytic activity under UV and visible light irradiation for the degradation of Methylene Blue (MB) and Rhodamine B (RdB) organic textile dyes was investigated. The structural, morphological and chemical characterizations were investigated by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), selected area electron diffraction (SAED), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), Fourier Transform Infrared Spectroscopy (FTIR), UV–vis. diffuse reflectance spectroscopy (UV–vis DRS) and photoluminescence (PL) analysis. The results reveal that the addition of surfactant, TX-100, in the precursor solutions leads to reduction in crystallite size with significant changes in morphological structure of SnO nanoparticles. The synthesized SnO nanoparticles show excellent photocatalytic activity under UV or visible light irradiation. MB and RdB dyes degraded completely under UV irradiation after 90 and 150 min, respectively. Also, MB and RdB dyes degraded only 150 min later under visible light illumination with a little amount of photocatalyst (0.8 g/L). Hence, this work explores the facile route to synthesizing efficient SnO nanoparticles for degrading organic compound under both UV and visible light irradiations.  相似文献   

9.
The photoreaction of indigo and two other derivatives in its reduced (leuco) form was investigated by absorption and fluorescence (steady-state and time-resolved) techniques. The fluorescence quantum yield (φ(F)) dependence with the UV irradiation time was found to increase up to a value of φ(F) ≈ 0.2-0.3 (after 16 min) for indigo and φ(F) = 0.2 (at ~150 min) for its derivative 4,4'-dibutoxy-7,7'-dimethoxy-5,5'-dinitroindigo (DBMNI). With a model compound, where rotation around the central C-C bond is blocked, the φ(F) value was found constant with the UV irradiation time. Time-resolved fluorescence revealed that initially the decays are fitted with a biexponential law (with 0.12 and 2.17 ns), ending with an almost monoexponential decay (~2.17 ns). Quantum yields for the isomerization photoreaction (φ(R)) were also obtained for indigo and DBMNI with values of 0.9 and 0.007, respectively. The results are rationalized in terms of a photoisomerization (conversion) reaction occurring in the first excited singlet state of trans to cis forms of leuco indigo.  相似文献   

10.
Solid-phase microextraction (SPME) is applied to study the photochemical degradation of five priority pesticides: atrazine, alachlor, aldrin, dieldrin, endrin. Analyses were carried out by gas chromatography-mass spectrometry. The possibility of studying the photochemical degradation of the target compounds in solid-phase microextraction fibers, "photo-SPME", is evaluated employing different SPME coatings. The target analytes were extracted from aqueous solutions using different commercial coatings and then, the fibers were exposed to UV light. Results indicated that on-fiber photodegradation takes place in a considerably major extent using PDMS coating for an irradiation time of 30min. On-fiber photodegradation kinetics of each analyte were determined by UV irradiation of the PDMS for different times. A large number of photoproducts were generated and they were tentatively identified by means of their mass spectra and with the aid of literature. In this way, main photodegradation mechanisms could be postulated. Aqueous photodegradation studies followed by SPME were performed and compared with photo-SPME. All the photoproducts detected in the aqueous experiments were previously found in the photo-SPME experiments. This study shows the potential of photo-SPME to evaluate the photo-transformation of organic pollutants.  相似文献   

11.
Cisplatin (cis-diamminedichloroplatinum(II)) causes crosslinking of DNA at AG and GG sites in cellular DNA, inhibiting replication, and making it a useful anti-cancer drug. Several techniques have been used previously to detect nucleic acid damage but most of these tools are labour-intensive, time-consuming, and/or expensive. Here, we describe a sensitive, robust, and quantitative tool for detecting cisplatin-induced DNA damage by using fluorescent molecular beacon probes (MB). Our results show a decrease of fluorescence in the presence of cisplatin-induced DNA damage, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). The decrease in fluorescence upon damage scales with the number of AG and GG sites, indicating the ability of MB to quantitatively detect DNA damage by cisplatin.  相似文献   

12.
The photochromicity of fulgimides rests on the existence of open (E) and closed ring (C) isomers. As predicted by the Woodward-Hoffmann rules both isomers can photochemically be interconverted. This interconversion has been studied by femtosecond fluorescence and transient absorption spectroscopy. For either direction (E --> C cyclization and C --> E cycloreversion) a biphasic fluorescence decay on the 0.1-1 ps time scale is observed. The longer time constants of the decays equal the formation times of the photoproducts. The time constants retrieved (0.06 and 0.4 ps for E --> C, 0.09 and 2.4 ps for C --> E) and the associated spectral signatures differ substantially. This indicates that no common excited-state pathway for the two directions exists, as one would infer from a simple Woodward-Hoffmann consideration. These findings support recent quantum dynamic calculations on the excited-state topology of fulgimides.  相似文献   

13.
The potential of performing photochemical studies in solid phase microextraction (SPME) fibers, "photo-SPME", to study the photodegradation of p,p'-DDT and two of its major degradation products, p,p'-DDE and p,p'-DDD, is shown. Analyses were carried out by gas chromatography mass spectroscopy detection. DDT was extracted from aqueous solutions using five different commercial coatings. The fibers were then exposed to UV light emitted by a low-pressure mercury lamp. After 30 min of irradiation, the degradation of DDT only occurred in polydimethylsiloxane fibers. The on-fiber degradation kinetics of p,p'-DDT was studied from 2 to 60 min. A large number of photoproducts were generated and their kinetic behavior was studied. In order to clarify the possible photoreaction pathways for DDT, individual water solutions containing p,p'-DDD or p.p'-DDE were prepared and photo-SPME was performed for each compound at different irradiation times. On the basis of the photoproducts identified, some photodegradation pathways are proposed. Finally, aqueous photodegradation studies followed by SPME were performed and compared to the photo-SPME. This work will show the enormous potential of photo-SPME to perform photodegradation studies.  相似文献   

14.
Absorption of UV radiation by DNA bases is known to induce carcinogenic mutations. The lesion distribution depends on the sequence around the hotspots, suggesting cooperativity between bases. Here we show that such cooperativity may intervene at the very first step of a cascade of events by formation of Franck-Condon states delocalized over several bases and subsequent energy transfer faster than 100 fs. Our study focuses on the double helix poly(dA).poly(dT), whose fluorescence, induced by femtosecond pulses at 267 nm, is probed by the upconversion technique and time-correlated single photon counting, over a large time domain (100 fs to 100 ns). The time-resolved fluorescence decays and fluorescence anisotropy decays are discussed in relation with the steady-state absorption and fluorescence spectra in the frame of exciton theory.  相似文献   

15.
The authors investigated the catalytic activity of TiO2 for methylene blue(MB) degradation under solar light.The reaction parameters such as reaction time,TiO2 content,temperature,pH,MB concentration and light irradiation were in attention.Then,the experimental data was analyzed to investigate the adsorption order and adsorption model.The results indicate that the optimum conditions for the removal of MB are a TiO2 content of 0.5 g/L,0.50 mg/L MB solution,a temperature of 30 ℃ and reaction time of 60 min.It was found that the amount of MB removal was decreased when the pH and temperature increased.This suggests that the removal process is exothermic.However,the solar light irradiation plays a vital role in enhancing the removal amount of MB.In the dark reaction,the ability of TiO2 to remove MB was increased when the pH increased.The kinetics studies confirm that the adsorption of MB is the Pseudo-second-order.And the adsorption model was fitted with the Freundlich isotherm.  相似文献   

16.
The fluorescence of the DNA double-stranded oligomer (dA)20 x (dT)20 is studied at room temperature by fluorescence up-conversion at times shorter than 10 ps. The profile of the up-conversion spectra is similar to that of the steady-state fluorescence spectrum, showing that the majority of the photons are emitted within the probed time scale. At all the probed wavelengths, the fluorescence decays are slower than those of the monomeric chromophores dAMP and TMP. The fluorescence anisotropy decays show strong wavelength dependence. These data allow us to conclude that energy transfer takes place in this double helix and that this process involves exciton states. The spectral and dynamical properties of the oligomer are compared to those of the polymer poly(dA) x poly(dT), composed of about 2000 base pairs, reported previously. The oligomer absorption spectrum is characterized by a smaller hypsochromic shift and weaker hypochromism compared to the polymer. Moreover, the fluorescence decays of (dA)20 x (dT)20 are twice as fast as those of poly(dA) x poly(dT), and its fluorescence anisotropy decays more slowly. These differences are the fingerprints of a larger delocalization of the excited states induced by an increase in the size of the duplex.  相似文献   

17.
Abstract— It is known that fluorescent light illumination prior to UV irradiation (FL preillumination) of cultured fish cells increases photorepair (PR) ability. In the present study, it was found that FL preillumination also enhanced UV resistance of logarithmically growing cells in the dark. This enhancement of UV resistance differs from induction of PR because it was not suppressed by cycloheximide (CH) and it occurred immediately after FL preillumination. The effects of FL preillumination on repair of UV-induced DNA lesions in the dark were examined by an endonuclease-sensitive site assay to measure the repair of cyclobutyl pyrimidine dimers, and by enzyme-linked immunosorbent assay to quantitate the repair of (6-4) photoproducts. It was found that excision repair ability for (6-4) photoproducts in the genome overall was increased by FL preillumination. Moreover, a decrease in (6-4) photoproducts by FL illumination immediately after UV irradiation of the cells was found, the decrement being enhanced by FL preillumination with or without CH.  相似文献   

18.
Exposure to solar UV radiation gives rise to mutations that may lead to skin cancer of human being. Series of experiments were carried out in order to reveal activation energy distribution of DNA mutation caused by UV radiation. The T-rich oligonucleotides were exposed to UV radiation with increasing intensity for different durations. Photoproducts of T-rich oligonucleotide were investigated using ion-pair reversed-phase high-performance liquid chromatography/tandem electrospray ionization mass spectrometry (IP-RP-HPLC/ESI-MS) at room temperature. Two photoproducts of T-rich oligonucleotide were cis-syn cyclobutane pyrimidine dimmer (T[c,s]T) and the pyrimidine(6,4)pyrimidone product (T[6,4]T). Activation energy distribution of DNA mutation was calculated using a commercial kinetics analysis programs by Robert L. Braun and Alan K. Burnham , Lawrance Livermore International Laboratory (version 2.4.1). To use the software for deriving the kinetics parameters, the factor T (temperature) in the software was substituted with k1R, in which k1 is a factor, R is radiation intensity. The activation energy derived ranges from 55 to 110 kJ mol(-1). By the same software, those kinetics parameters were extrapolated to natural UV radiation process to predict DNA damage degree without the DNA repair process.  相似文献   

19.
A study of the effect of light intensity and wavelengths on photodegradation reactions of riboflavin (RF) solutions in the presence of phosphate buffer using three UV and visible radiation sources has been made. The rates and magnitude of the two major photodegradation reactions of riboflavin in phosphate buffer (i.e., photoaddition and photoreduction) depend on light intensity as well as the wavelengths of irradiation. Photoaddition is facilitated by UV radiation and yields cyclodehydroriboflavin (CDRF) whereas photoreduction results from normal photolysis yielding lumichrome (LC) and lumiflavin (LF). The ratios of the photoproducts of the two reactions at 2.0 M phosphate concentration, CDRF/RF (0.09-0.22) and CDRF/LC (0.54-1.75), vary with the radiation source and are higher with UV radiation than those of the visible radiation. On the contrary, the ratios of LF/LC (0.15-0.25) increase on changing the radiation source from UV to visible. The rate is much faster with UV radiation causing 25% degradation of a 10(-5) M riboflavin solution in 7.5 min compared to that of visible radiations in 150-330 min.  相似文献   

20.
Spores of Bacillus subtilis are approximately ten times less likely to survive UV light irradiation in a vacuum than under atmospheric conditions. Photoproduct formation was studied in spores irradiated under ultrahigh vacuum (UHV) conditions and in spores irradiated at atmospheric pressure. In addition to the "spore photoproduct" 5-thyminyl-5,6-dihydrothymine (TDHT), which is produced in response to irradiation at atmospheric pressure, two additional photoproducts, known as the cis-syn and trans-syn isomers of thymine dimer, are produced on irradiation in vacuo. The spectral efficiencies for photoproduct formation in spores are reduced under vacuum conditions compared with atmospheric conditions by a factor of 2-6, depending on the wavelength. Because formation of TDHT does not increase after irradiation in vacuo, TDHT cannot be responsible for the observed vacuum effect. Vacuum specific photoproducts may cause a synergistic response of spores to the simultaneous action of UV light and UHV. An increased quantum efficiency, destruction of repair systems and formation of irreparable lesions are postulated for the enhanced sensitivity of B. subtilis spores to UV radiation in vacuo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号