首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sedimentation and drying dissipative structural patterns were formed during the course of drying binary mixtures among colloidal silica spheres of 183 nm, 305 nm, and 1.205 μm in diameter in aqueous suspension on a watch glass, a glass dish, and a cover glass, respectively. The broad ring-like sedimentation patterns were formed within several hours in suspension state for all the substrates used. Colorful macroscopic broad ring-like drying patterns were formed for the three substrates. In a watch glass, macroscopic drying patterns were composed of the outer and inner layers of small and large spheres, respectively. The two colored layers were ascribed to the Bragg diffractions of light by the dried colloidal crystals of the corresponding spheres. The width ratio of the layers changed in proportion to the mixing ratio of each spheres. In a glass dish, wave-like macroscopic drying patterns were observed in the intermediate areas between the outside edges of the broad ring and the inner wall of the cell. On a cover glass, the sphere mixing ratios were analyzed from the widths of the drying broad rings of the small spheres at the outside edge. High and distinct broad rings of small spheres and the low and vague broad one formed at the outer edges and in the inner area, respectively. Drying dissipative pattern was clarified to be one of the novel analysis techniques of colloidal size in binary colloidal mixtures.  相似文献   

2.
Sedimentation and drying dissipative structural patterns formed in the course of drying colloidal silica spheres (305 nm in diameter) in aqueous suspension have been studied in a glass dish and a watch glass. The broad ring sedimentation patterns formed within several tenth minutes in suspension state by the convectional flow of water and colloidal spheres. The sedimentary spheres always moved by the convectional flow of water, and the broad ring patterns became sharp with time. The width of the broad rings was sensitive to the change in the room temperature and/or humidity. In other words, the patterns became sharp or vague when the room parameters decreased or increased. Colorful macroscopic drying structures were composed of a broad ring and the wave-formed patterns. Iridescent colored fine patterns formed in the solidification processes on the bases of the sedimentation patterns. Beautiful drying patterns were observed for the suspension mixtures of CS300 and NaCl, and were different from the structures of CS300 or NaCl individuals, which support the synchronous cooperative interactions between the colloidal spheres and the salt.  相似文献   

3.
The sedimentation and drying dissipative structural patterns formed during the course of drying colloidal silica spheres (CS550, 560 nm in diameter) in an aqueous suspension have been studied in a glass dish and a watch glass. Broad ring patterns were formed within 20 min in the suspension state by the convectional flow of the colloidal spheres and water. The sedimentary spheres always moved by the convectional flow of water, and the broad ring patterns became sharp with time. The sharpness of the broad rings was sensitive to the change in the room temperature and/or humidity. Colorful macroscopic structures were composed of the broad ring and wave-like patterns, and further colorful and beautiful microscopic fine patterns formed during the solidification processes based on the convectional and sedimentation structures. The drying patterns of the colloidal suspensions containing sodium chloride were different from the structures of CS550 or sodium chloride individuals, which support the synchronous cooperative interactions between the colloidal spheres and the salts.  相似文献   

4.
The sedimentation and drying dissipative structural patterns were formed during the course of drying ternary mixtures of colloidal silica spheres of 183 nm, 305 nm, and 1.205 μm in diameter in aqueous suspension on a watch glass, a glass dish, and a cover glass. The patterns were observed by closed-up pictures, metallurgical optical microscopy, 3D profile microscopy, reflection spectroscopy and AFM images. The concentrations of the three spheres ranged from 0.0023 to 0.0128 keeping the same concentrations for each spheres. Broad ring-like sedimentation patterns were formed within a short time in suspension state especially in a glass dish. In a watch glass, colorful three layered ring-like drying patterns were observed and composed of the outer, middle and inner layers of small, medium, and large spheres, respectively. The three colored segregated layers were formed by the balancing between the outward convectional flow and the inward sedimentation of spheres. In a glass dish, wave-like macroscopic drying patterns were observed in the intermediate areas between the outside edge of the broad ring at the central area and the inner wall of the cell especially at low sphere concentrations. The size of the broad ring at the central area increased as sphere concentration increased. On a cover glass, size segregation also took place, i.e., small, medium, and large spheres located at the outer, medium, and central areas, though these segregations were not so complete compared with those on a watch glass.  相似文献   

5.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying the fractionated and monodisperse bentonite particles (plate-like in their shape) in aqueous deionized suspension and in the presence of NaCl have been studied on a cover glass. The patterns coexisted with the broad ring of the hill accumulated with the particles and with the round hills are formed around the outside edges of the film and in the center, respectively, in the macroscopic scale. By the addition of NaCl the pattern shifts from the broad ring to the round hill in the center. The spoke-like cracks, which have been observed for the suspensions of the spherical particles so often hitherto, are not observed at all for the bentonite suspensions. The characteristic convection flow of the particles and the interactions among the particles and substrate are important for the macroscopic pattern formation. Wrinkled, branch-like and/or star-like fractal patterns are observed in the microscopic scale. These patterns are determined mainly by the electrostatic and polar interactions between the particles and/or between the particle and the substrate in the course of drying.  相似文献   

6.
Convectional, sedimentation, and drying dissipative structural patterns formed during the course of drying aqueous colloidal crystals of silica spheres (183 nm in diameter) have been studied in a glass dish and a watch glass. Spoke-like convectional patterns were observed in a watch glass. The broad ring sedimentation patterns formed especially in a glass dish within 30–40 min in suspension state by the convectional flow of water and colloidal spheres. The macroscopic broad ring drying patterns formed both in a glass dish and a watch glass. The ratio of the broad ring size in a glass dish against the initial size of suspension, i.e., inner diameter of the glass dish, d f/d i, in this work, were compared with previous work of other silica spheres having sizes of 305 and 560 nm and 1.2 μm in diameter. The d f/d i values in a glass dish increased as sphere concentration increased, but were rather insensitive to colloidal size. The d f/d i values on a watch glass also increased as sphere concentration increased, and further increased as sphere size decreased. Segregation effect by sphere size in a watch glass takes place by the balancing between the upward convectional flow of spheres in the lower layers of the liquid and the downward sedimentation of spheres. Colorful microscopic drying patterns formed both in a glass dish and a watch glass.  相似文献   

7.
Drying dissipative structures of aqueous solution of poly(ethylene glycol) (PEG) of molecular weights ranging from 200 to 3,500,000 were studied on a cover glass, a watch glass, and a glass dish on macroscopic and microscopic scales. Any convectional and sedimentation patterns did not appear during the course of drying the PEG solutions. Several important findings on the drying patterns are reported. Firstly, the crystalline structures of the dried film changed from hedrites to spherulites as the molecular weight and/or concentration of PEG increased. Secondly, lamellae were formed along the ring patterns especially at high concentrations and high molecular weights. The coupled crystalline patterns of the spherulites and the lamellae were observed in a watch glass along the ring structures, supporting the important role of the convection by the gravity during the course of dryness. The coupled patterns were difficult to be formed on a cover glass and a glass dish, except at the outside edge of the dried film. Thirdly, the size of the broad ring at the outside edge of the dried film especially on a cover glass and a watch glass increased sharply as the molecular weight increased and also as the polymer concentration increased. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

8.
Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solutions of α-cyclodextrin (αCD), β-cyclodextrin (βCD), and γ-cyclodextrin (γCD), i.e., cone shape oligomers of polysaccharide. For all CD molecules, two kinds of macroscopic patterns, outside and inner broad rings and spoke lines formed. Multi-broad rings were formed for βCD in the inner region of the main broad ring at the outside edge especially at the high concentrations. Cooperative drying processes of the convection, sedimentation, and solidification were clarified. Microscopic drying patterns showing the formation of rod-like and/or sward-like crystals were observed mainly in the direction along the spoke lines. The microscopic patterns of βCD were similar to those of some of polysaccharides and polynucleotides the authors studied previously. α- and γ-cyclodextrins were slightly hygroscopic, and clear-cut drying patterns were not observed.  相似文献   

9.
Macroscopic and microscopic drying patterns were observed on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous suspensions of similar sized aggregates of diamonds (CD1), which formed from the deionization of the pre-particles of diamond 4 nm in diameter. Two kinds of macroscopic patterns, i.e., outer and inner broad rings, and spoke lines were formed. Cooperative drying processes of the convection, sedimentation, and solidification were clarified. Microscopic drying patterns showing the formation of very large dendritic aggregates from the CD1 particles were observed only when the excess amount of sodium chloride higher than 2 mM coexisted in the initial suspensions before dryness and further initial CD1 concentration is lower than 0.17 wt%.  相似文献   

10.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying a series of the anionic detergents, sodium n-alkyl sulfate (n-alkyl = n-hexyl, n-octyl, n-decyl, n-dodecyl, n-hexadecyl, and n-octadecyl), on a cover glass have been observed. The broad ring patterns of the hill accumulated with the detergent molecules are formed around the outside edges in the macroscopic scale. The microscopic patterns of the small blocks, star-like patterns, and branched strings are formed. The pattern area and the time for the dryness have been discussed as a function of detergent concentration and the number of carbons of the detergents. The convection flow of water accompanied by the detergent molecules, change in the contact angles at the drying frontier between the solution and substrate in the course of dryness, and interactions among the detergents and substrate are important for macroscopic pattern formation. Microscopic patterns are determined mainly by the shape and size of molecules, translational Brownian movement of detergent molecules, and the electrostatic and hydrophobic interactions between detergents and/or between the detergent and substrate in the course of solidification.  相似文献   

11.
Sedimentation and drying dissipative structural patterns formed in the course of drying colloidal silica spheres (1.2 μm in diameter) in aqueous suspension have been studied in a glass dish and a polystyrene dish. The broad ring patterns are formed within a short time in suspension state by the convection flow of water and colloidal spheres. The broad ring patterns are not formed when a dish is covered with a cap, which demonstrates the important role of the convectional flow of silica spheres and water accompanied with the evaporation of water on the air-suspension interface. The sedimentary spheres always move by the convectional flow of water, and the broad ring patterns became sharp with time. Broad ring and microscopic fine structures are formed in the solidification processes on the bases of the convectional and sedimentation patterns. Drying patterns of the colloidal suspensions containing sodium chloride are star-like ones, which strongly supports the synchronous cooperative interactions between the salt and colloidal spheres.  相似文献   

12.
Macroscopic and microscopic dissipative structural patterns are formed in the course of drying an aqueous solution of n-dodecyltrimethylammonium chloride on a cover glass. Broad ring patterns of the hill accumulate with detergent molecules to form around the outside edges of the film solution in the macroscopic scale. The drying time (T) and the pattern area (S) decrease and increase respectively, as the detergent concentration increases. T decreases significantly as the ethanol fraction increases in the aqueous ethanol mixtures, whereas S increases as the fraction increases. Both T and S decrease as the concentrations of KCl, CaCl2 or LaCl3 increase. Cross-, branch-, and arc-like microscopic patterns are observed in the separated block regions. The convection of water and detergents at different rates under gravity and the translational and rotational Brownian movement of the latter are important for macroscopic pattern formation. Microscopic patterns are determined by the translational Brownian diffusion of the detergent molecules and the electrostatic and the hydrophobic interactions between the detergents and/or between the detergent and cell wall in the course of the solidification.  相似文献   

13.
Drying dissipative patterns were observed at 25 °C, 33 °C, and 45 °C on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of colloidal crystals of the thermo-sensitive gels of poly(N-isopropylacrylamide) (PNIPA). Two kinds of broad rings, i.e., transparent ring at the outside edge and the ring in the inner area from the edge, were observed. Sizes of the former were the same as those of the initial liquids irrespective of gel concentration, whereas sizes of the latter decreased as gel concentration decreased. These broad rings were composed mainly of the monomeric and the agglomerated gel particles, respectively. Formation of the monodispersed agglomerated particles and their ordered arrays in the inner area of the dried film were observed especially on a Petri glass dish and a watch glass. The important role of the electrical double layers formed around the agglomerated particles is supported for the ordering of the agglomerated particles. The essential differences in the drying patterns between PNIPA gel spheres and the typical colloidal particles did not appear.  相似文献   

14.
Drying dissipative structural patterns formed in the course of drying colloidal crystals of silica spheres (110 nm in diameter) in water, methyl alcohol, ethyl alcohol, 1-propyl alcohol, diethyl ether, and in the mixtures of ethyl alcohol with the other solvents above have been studied on a cover glass. The macroscopic broad rings were formed in the outside edges of the dried film for all the solvents examined. Furthermore, much distinct broad rings appeared in the inner area when the solvents were ethyl alcohol, methyl alcohol, and their mixtures. Profiles of the thickness of the dried films were sensitive to the organic solvents and explained well with changes in the surface tensions, boiling points, and viscosities of the solvents. The macroscopic and microscopic spoke-like crack patterns formed. The drying area (or the drying time) increased (or decreased) as the surface tension of the solvent decreased. However, the absolute values of these drying parameters are determined also by the boiling points of the solvents. Importance of the fundamental properties of the solvents is supported in addition to the characteristics of colloidal particles in the drying dissipative pattern formation.  相似文献   

15.
Macroscopic and microscopic dissipative structural patterns form in the course of drying a series of aqueous solutions of polyoxyethylenealkyl ethers. The shift from the single round hill with accumulated surfactant molecules to the broad ring patterns of the hill in a macroscopic scale occurs as the HLB (hydrophile-liophile balance) of the surfactant molecules increases. The patterns correlate intimately with the HLB values of the surfactants. Microscopic patterns of small blocks, starlike patterns, and branched strings are formed. The size and shape of the surfactant molecules themselves influence the drying patterns in part. The pattern area and the time to dryness have been discussed as a function of surfactant concentration and HLB of the surfactants. The convection flow of water accompanying the surfactant molecules, the change in the contact angles at the drying frontier between solution and substrate in the course of dryness, and interactions among the surfactants and substrate are important for the macroscopic pattern formation. Microscopic patterns are determined in part by the shape and size of the molecules, translational Brownian movement of the surfactant molecules, and the electrostatic and hydrophobic interactions between surfactants and/or between the surfactant and substrate in the course of solidification.  相似文献   

16.
Macroscopic and microscopic dissipative structural patterns formed in the course of drying a series of the colloidal silica spheres ranging from 29 nm to 1 m in diameter have been observed in the aqueous deionized suspension on a cover glass. The broad ring patterns of the hill accumulated with the silica spheres are formed around the outside edges in the macroscopic scale for all spheres examined. The spoke-like cracks are also observed in the macroscopic scale and their number decreases sharply as sphere size increases. The pattern area and the time for the dryness have been discussed as a function of sphere size and concentration. The convection flow of water accompanied with that of the silica spheres and interactions among the silica spheres and substrate are important for the macroscopic pattern formation. The microscopic fractal structures of the wave-like patterns and branched strings are formed. Their fractal dimensions are determined. Microscopic patterns form in the narrow range of sphere sizes and concentrations and are determined mainly by the electrostatic and polar interactions between the spheres and/or between the sphere and substrate in the course of solidification.  相似文献   

17.
Drying dissipative patterns of de-ionized suspensions (colloidal crystal-state at high concentrations) of the thermosensitive gels of poly (N-isopropylacrylamide) with various sizes (ca. 400–1,500?nm in diameter at 20?°C) were observed at 20 and 45?°C on a cover glass, a watch glass, and a Petri glass dish. The broad rings were observed and their size decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed irrespective of gel size. The macroscopic flickering spoke-like patterns were observed for the gel spheres from 70 to 600?nm in diameter at 20?°C, but almost disappeared for extremely large spheres, poly(N-isopropylacrylamide)(1500-5). This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordered rings became rather vague as gel size increased. The large net structures formed so often for large gels. Size effect on the lattice patterns was not recognized so clearly. The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrate surfaces during dryness are important for the ordering. The microscopic drying patterns of gel spheres were quite different from those of linear type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges of the dried film were similar to each other.  相似文献   

18.
Drying dissipative patterns of deionized and colloidal crystal-state suspensions of the cationic gel spheres of lightly cross-linked poly(2-vinyl pyridine) stabilized with poly(ethylene glycol) were observed on a cover glass, a watch glass, and a Petri glass dish. Convectional patterns were recognized with the naked eyes. The broad rings were observed in the drying pattern and their size and width decreased as gel concentration decreased. Formation of the monodispersed agglomerated particles and their ordered arrays were observed. This work clarified the formation of the drying microscopic structures of (a) ordered rings, (b) flickering ordered spoke-lines, (c) net structure, and (d) lattice-like ordered structures of the agglomerated particles. The ordering of the agglomerated particles of the cationic gel spheres is similar to that of the anionic thermo-sensitive gel spheres of poly(N-isopropyl acrylamide). The role of the electrical double layers around the agglomerated particles and the interaction of the particles with the substrates during dryness are important for the ordering. The microscopic drying patterns of gel spheres were different from those of linear-type polymers and also from typical colloidal hard spheres, though the macroscopic patterns such as broad ring formation at the edges were similar to each other. The addition of sodium chloride shifted the microscopic patterns from lattice to net structures.  相似文献   

19.
Drying dissipative patterns were observed at room temperature on a cover glass, a watch glass, and a Petri glass dish during the course of dryness of aqueous solution of sodium salts of dextran sulfate (NaDSS) having molecular weights of 5000, 36,000 ~ 50,000 and 500,000. These biopolyelectrolytes are one of the typical polysaccharides. The influences of the hexose units upon the macroscopic and microscopic drying patterns are studied. Formation of some ordered structure is observed for NaDSS in high polymer concentrations especially on a cover glass. Broad ring size decreased as polymer concentration decreased and/or its molecular weight increased. Drying patterns are clarified to be formed by the successive and cooperative pattern formation of convection, sedimentation, and solidification.  相似文献   

20.
Drying dissipative structural patterns formed in the course of drying ethyl alcohol solutions of rhodamine 6G, uranine, 7-hydroxy coumarin, and 7-amino-4-(trifluoro methyl)-coumarin are studied on a cover glass. The macroscopic broad ring patterns form for all the solutions examined, which supported importance of the convectional flow of ethyl alcohol and dye solutes. Dried area increases as dye concentration increases above the critical dye concentration. Microscopic fine patterns including street-like, needle-like, and flower-like crystal structures are formed in the solidification processes. Change in the functional side group moieties of the dyes gives the strong effect on the microscopic drying patterns; even the main chemical structures are same. Kinetic aspect of the drying patterns is studied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号