首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Synthesis, Crystal Structures, and Properties of the Chromium(II) Phosphate Halides Cr2(PO4)Br and Cr2(PO4)I The new compounds Cr2(PO4)Br and Cr2(PO4)I have been obtained by reaction of CrPO4, Cr and Br2 or I2 in evacuated silica tubes at elevated temperatures (Cr2(PO4)Br: 900 °C, Cr2(PO4)I: 700 °C). Single crystals of deep blue Cr2(PO4)Br and turquoise Cr2(PO4)I with edge-lengths up to 2 mm and 0.3 mm, respectively, have been grown in experiments involving the gaseous phase. Single crystal data have been used for structure determination and refinement. Though being not isotypic, the two crystal structures are closely related. Two crystallographically independent Cr2+, in polyhedra [Cr1O3X3] and [Cr2O5X], form dimers [Cr12O2O2/2X4] and [Cr22O8X2]. Distances are 1.978 Å ≤ d(Cr–O) ≤ 2.096 Å (for the iodide: 1.959 Å ≤ d(Cr–O) ≤ 2.105 Å), 2.587 Å ≤ d(Cr–Br) ≤ 3.158 Å and 2.867 Å ≤ d(Cr–I) ≤ 3.327 Å. The structures of bromide and iodide can be distinguished by the different way of connection of the Cr1 containing dimers. The phosphate group shows slightly distorted tetrahedral geometry with 1.491 Å ≤ d(P–O) ≤ 1.559 Å (1.486 Å ≤ d(P–O) ≤ 1.567 Å) and angles of 106.48° ≤ ∠(O–P–O) ≤ 111.69° (106.57° ≤ ∠(O–P–O) ≤ 111.72°. IR-spectra of Cr2(PO4)Br and Cr2(PO4)I, the Raman-spectrum of Cr2(PO4)Br and electronic spectra of the two compounds in the UV/vis region at low temperature are reported and discussed.  相似文献   

2.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of ( n ‐Bu4N)2[Os(NCS)6] and ( n ‐Bu4N)3[Os(NCS)6] By tempering the solid mixture of the linkage isomers (n‐Bu4N)3[Os(NCS)n(SCN)6–n] n = 0–5 for a longer time at temperatures increasing from 60 to 140 °C the homoleptic (n‐Bu4N)3[Os(NCS)6] is formed, which on oxidation with (NH4)2[Ce(NO3)6] in acetone yields the corresponding OsIV complex (n‐Bu4N)2[Os(NCS)6]. X‐ray structure determinations on single crystals of (n‐Bu4N)2[Os(NCS)6] (1) (triclinic, space group P 1, a = 12.596(5), b = 12.666(5), c = 16.026(5) Å, α = 88.063(5), β = 80.439(5), γ = 88.637(5)°, Z = 2) and (n‐Bu4N)3[Os(NCS)6] ( 2 ) (cubic, space group Pa 3, a = 24.349(4) Å, Z = 8) have been performed. The nearly linear thiocyanate groups are coordinated with Os–N–C angles of 172.3–177.7°. Based on the molecular parameters of the X‐ray determinations the IR and Raman spectra are assigned by normal coordinate analysis. The valence force constant fd(OsN) is 2.3 ( 1 ) and 2.10 mdyn/Å ( 2 ).  相似文献   

3.
Synthesis, Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of [Co(NH3)6][Os(SCN)6] From the mixture of the linkage isomers [Os(NCS)n(SCN)6–n]3–, n = 0–2, pure [Os(SCN)6]3– has been isolated by ion exchange chromatography on diethylaminoethyl cellulose. The X‐ray structure determination on a single crystal of [Co(NH3)6][Os(SCN)6] (trigonal, space group R 3, a = 12.368(2), c = 11.830(2) Å, Z = 3) reveals that the thiocyanate ligands are exclusively S‐coordinated with the Os–S distance of 2.388 Å and the Os–S–C angle of 108.8°. The IR and Raman spectra of (n‐Bu4N)3[Os(SCN)6] are assigned by normal coordinate analysis based on the molecular parameters of the X‐ray determination. The valence force constant fd(OsS) is 1.42 mdyn/Å.  相似文献   

4.
Spectroscopical Properties of Di(phthalocyaninato)metalates(III) of the Rare Earth Elements. Part 1: Electronic Absorption and Vibrational Spectra Di(phthalocyaninato)metalates(III) of the rare earth elements were prepared by the reaction of partially dehydrated lanthanide acetate with molten phthalodinitrile in the presence of potassium methylate and isolated as complex salts with different tetraalkylammonium cations, especially tetra(n-butyl)- and tri(n-dodecyl)n-octylammonium and di((triphenyl)phosphine)-iminium (abbrev.: (nBu4N), TDOA, PNP). Besides the typical strong π-π* transitions in the B, Q, N regions of the Pc2? ligands low intensity bands at ca. 10, 11 and 19 kK are observed in the UV-Vis-NIR spectra and assigned to singulet–triplet transitions. In going from La to Lu the B band splits continously due to excitonic coupling extending from 0,71 (La) to 1,92 kK (Lu). The FIR-MIR and resonance Raman spectra are nearly metal independent with the exception of some hypsochromically shifted bands due to C? C and C? N stretching and deformation vibrations of the inner (CN)8 ring. Only the FIR band at 157 cm?1 (La) assigned to the asym. Ln? N stretching vibration is shifted to lower energy.  相似文献   

5.
Ln3UO6Cl3 (Ln=La, Pr, Nd) — The First Oxochlorouranates of the Rare Earths . The new compounds Ln3UO6Cl3 (Ln=La, Pr, Nd) were prepared by heating stoichiometric amounts of LnOCl/Ln2O3/U3O8 (7 : 1 : 1) (Ln=La, Nd) and PrOCl/Pr6O11/U3O8 (12 : 1 : 2) in silica ampoules (5 d, 1000°C, Ln=La; 9 d 800°C, Ln=Pr, Nd) in the presence of an excess of chlorine [p(Cl2, 25°C)=1 atm]. Single crystals were obtained by chemical transport reactions using chlorine [p(Cl2, 25°C)=1 atm] as transport agent [T2=1000°C→T1=900°C (Ln=La); T2=840°C→T1=780°C (Ln=Pr, Nd)]. Crystals of Ln3UO6Cl3 (Ln=La, Pr, Nd) were investigated by X-ray diffraction methods and La3UO6Cl3 additionally by high resolution electron microscopy. The compounds Ln3UO6Cl3 crystallize in the hexagonal spacegroup P63/m (No. 176) with Z=2 formula units per unit cell. Isotypical structure refinements resulted in R=3.04% respectively Rw=1.91% (Ln=La), R=4.72% respectively Rw=3.80% (Ln=Pr) and R=3.99% respectively Rw=2.49% (Ln=Nd). Uranium is coordinated with six oxygen atoms forming a trigonal prism. Lanthanide ions are 10-coordinated (6 oxygen atoms, 4 chlorine atoms).  相似文献   

6.
3硝基1,2,4三唑5酮(NTO)的锂盐水溶液与Yb2O3的稀硝酸溶液反应,制备了标题配合物,其化学式为Yb(NTO)3·10H2O。用X射线衍射法测定配合物的晶体结构,其分子式为[Yb(NTO)3(H2O)4]·6H2O。属单斜晶系,空间群为C2/c。晶胞参数如下:a=36931(5)nm,b=06683(10)nm,c=25656(3)nm,β=130974(5)°,V=47811(11)nm3,Z=8,Dc=2013g·cm-3,μ=4017mm-1,F(000)=2850。镱离子的配位数为7,其配位多面体为五角双锥。  相似文献   

7.
Preparation and Crystal Structures of the first Alkalimetall‐hexacarbonato‐oxotetraberyllates: K6[Be4O(CO3)6] · 7 H2O and K6[Be4O(CO3)6] K6[Be4O(CO3)6] · 7 H2O has been prepared by dissolving freshly precipitated Be(OH)2 in an aqueous KHCO3 solution. After enriching the title compound by extraction with ethanol the heptahydrate crystallizes from the organic phase (triklin, P1¯ (No. 2) with a = 951, 01(11), b = 958, 45(12), c = 1601, 7(2) pm, α = 79, 253(13)°, β = 78, 943(12)°, γ = 65, 119(12)°, VEZ = 1290, 6(3)·106 pm3, Z = 2). Thermal decomposition forms rhombohedral crystals of the anhydrous compound (trigonal‐rhombohedric, R3¯ (No. 148) with a = 1416, 42(6), c = 1704, 5(1) pm, VEZ = 2961, 4(3)·106 pm3, Z = 6).  相似文献   

8.
Crystal Structure, Vibrational Spectra, and Normal Coordinate Analysis of (CH2py2)[Ru(NO)FCl4] By treatment of [Ru(NO)Cl5]2– with a BrF3 saturated frigen solution in dichloromethane the complex [Ru(NO)FCl4]2– is formed, which can be separated from hydrolysis products by ion exchange chromatography on diethylaminoethyl cellulose. The X‐Ray structure determination on a single crystal of (CH2py2)[Ru(NO)FCl4] · 1/2 (CH3)2CO (triclinic, space group P1, a = 9.416(2), b = 14.919(6), c = 15.127(3) Å, α = 61.86(3), β = 80.31(2), γ = 72.49(3)°, Z = 4) reveals, that the fluorine atom is trans positioned to the nitrosyl group. The low temperature IR and Raman spectra have been recorded of (n‐Bu4N)2[Ru(NO)FCl4] and are assigned by normal coordinate analysis. A good agreement between observed and calculated frequencies is achieved. The valence force constants are fd(NO) = 13.92, fd(RuN) = 5.16, fd(RuF) = 3.19 and fd(RuCl) = 1.45 mdyn/Å. The 19F NMR spectra exhibits one singlet at –144.6 ppm.  相似文献   

9.
Synthesis, Vibrational Spectra, and Crystal Structure of the Disiloxanato‐chloroberyllate (Ph4P)2[Be4Cl6(OSiMe2OSiMe2O)2] (Ph4P)2[Be4Cl6(OSiMe2OSiMe2O)2] ( 1 ) was prepared by the reaction of (Ph4P)2[Be2Cl6] with cyclo‐hexamethyl‐trisiloxane in dichloromethane solution, forming colourless, moisture sensitive crystals, which are characterized by their vibrational spectra (IR, Raman) and by an X‐ray crystal structure determination. 1 crystallizes in the triclinic space group with Z = 1 and with the lattice dimensions at 193 K: a = 1050.0(1), b = 1248.2(1), c = 1312.5(1) pm, α = 84.37(1)°; β = 76.53(1)°; γ = 70.79(1)°; R1 = 0.0349. 1 consists of (Ph4P)+ions and centrosymmetric anions [Be4Cl6(OSiMe2OSiMe2O)2]2‐, in which the four beryllium atoms are connected by the terminal oxygen atoms of the (OSiMe2OSiMe2O)2‐ ligands via two‐forked bonds to give Be2O2 four‐membered rings. The Be atoms of these units are additionally bridged by two μ‐Cl atoms. 1 is also obtained by reaction of (Ph4P)2[Be2Cl6] with Baysilon grease.  相似文献   

10.
在水乙醇溶液中合成了3 种四元混合阴离子配合物, 用元素分析、IR、UV 及单晶X射线衍射进行了表征。[La(CCl3COO)2(CH3COO)(Phen)(H2O)]2·2DMF 晶体属三斜晶系, P1 空间群, 晶胞参数:a= 1-2510(4) nm , b= 1-3460(5) nm , c = 1-0343(3) nm , α= 102-47(3)°, β= 102-34(2)°, γ= 113-82(2)°, μ(MoKα) = 20.47 cm -1 , Z= 1, Dc= 1-800 g·cm - 3 , F(000) = 780-00。稀土配合物中醋酸根以桥联方式配位, 三氯醋酸根则有2 种配位方式, 在二者共同参与配位的体系中呈现出丰富的配位模式。  相似文献   

11.
Preparation, Crystal Structure, Thermal Decomposition, and Vibrational Spectra of [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O [Co(NH3)6]2[Be4O(CO3)6] · 10 H2O is a suitable compound for the quantitative determination of beryllium. It can be obtained by reaction of aqueous solutions of carbonatoberyllate with [Co(NH3)6]Cl3. The crystal structure (trigonal‐rhombohedral, R3c (Nr. 161), a = 1071,6(1) pm, c = 5549,4(9) pm, VEZ = 5519(1) · 106 pm3, Z = 6, R1(I ≥ 2σ(I)) = 0,037, wR2(I ≥ 2σ(I)) = 0,094) contains [Co(NH3)6]3+‐ and [Be4O(CO3)6]6–‐ions, which are directly hydrogen bonded as well as with water molecules. The complex cations and anions occupy the positions of a distorted anti‐CaF2‐type. The thermal decomposition, IR and Raman spectra are presented and discussed.  相似文献   

12.
Preparation, Crystal Structures, Vibrational Spectra, and Normal Coordinate Analysis of trans-(PNP)[TcCl4(Py)2] and trans-(PNP)[TcBr4(Py)2] By reaction of (PNP)2[TcX6] with pyridine in the presence of [BH4]? (PNP)[TcX4(Py)2], X = Cl, Br, are formed. X-ray structure determinations on single crystals of these isotypic TcIII complexes (monoclinic, space group P21/n, Z = 2, for X = Cl: a = 13.676(4), b = 9.102(3), c = 17.144(2) Å, β = 91.159(1)°; for X = Br: a = 13.972(2), b = 9.146(3), c = 17.285(4) Å, β = 90.789(2)°) result in the averaged bond distances Tc? Cl: 2.386, Tc? Br: 2.519, Tc? N: 2.132(3) (X = Cl) and 2.143(4) Å (X = Br). The two pyridine rings are coplanar and vertical to the X? Tc? X-axes, forming angles of 42.28° (X = Cl) and 43.11° (X = Br). Using the molecular parameters of the X-ray structure determination and assuming D2h point symmetry, the IR and Raman spectra are assigned by normal coordinate analysis based on a modified valence force field. Good agreement between observed and calculated frequencies is obtained with the valence force constants fd(TcCl) = 1.45, fd(TcBr) = 1.035, fd(TcN) = 1.37 (X = Cl) and 1.45 mdyn/ Å (X = Br), respectively.  相似文献   

13.
Synthesis, Crystal Structure, and Vibrational Spectra of (n-Bu4N)2[(Mo6I)(NCS)] By treatment of [(Mo6I)I]2– with (SCN)2 in dichloromethane at –20 °C the hexaisothiocyanato cluster anion [(Mo6I)(NCS)]2– is formed. The X-ray structure determination of (n-Bu4N)2[(Mo6I)(NCS)] · 2 Me2CO (monoclinic, space group P21/c, a = 13.168(5), b = 11.964(5), c = 24.636(5) Å, β = 104.960(5)°, Z = 2) shows, that the thiocyanate groups are coordinated exclusively via N atoms with Mo–N bond lengths of 2.141–2.150 Å, Mo–N–C angles of 166–178° and N–C–S-angles of 174–180°. The vibrational spectra exhibit characteristic innerligand vibrations at 2073–2054 (νCN), 846–844 (νCS) and 480–462 cm–1NCS).  相似文献   

14.
Synthesis and Crystal Structures of Ln 2Al3Si2 and Ln 2AlSi2 ( Ln : Y, Tb–Lu) Eight new ternary aluminium silicides were prepared by heating mixtures of the elements and investigated by means of single‐crystal X‐ray methods. Tb2Al3Si2 (a = 10.197(2), b = 4.045(1), c = 6.614(2) Å, β = 101.11(2)°) and Dy2Al3Si2 (a = 10.144(6), b = 4.028(3), c = 6.580(6) Å, β = 101.04(6)°) crystallize in the Y2Al3Si2 type structure, which contains wavy layers of Al and Si atoms linked together by additional Al atoms and linear Si–Al–Si bonds. Through this there are channels along [010], which are filled by Tb and Dy atoms respectively. The silicides Ln2AlSi2 with Ln = Y (a = 8.663(2), b = 5.748(1), c = 4.050(1) Å), Ho (a = 8.578(2), b = 5.732(1), c = 4.022(1) Å), Er (a = 8.529(2), b = 5.719(2), c = 4.011(1) Å), Tm (a = 8.454(5), b = 5.737(2), c = 3.984(2) Å) and Lu (a = 8.416(2), b = 5.662(2), c = 4.001(1) Å) crystallize in the W2CoB2 type structure (Immm; Z = 2), whereas the structure of Yb2AlSi2 (a = 6.765(2), c = 4.226(1) Å; P4/mbm; Z = 2) corresponds to a ternary variant of the U3Si2 type structure. In all compounds the Si atoms are coordinated by trigonal prisms of metal atoms, which are connected by common faces so that Si2 pairs (dSi–Si: 2.37–2.42 Å) are formed.  相似文献   

15.
Syntheses, Vibrational Spectra, and Normal Coordinate Analysis of Halogenonitrosylruthenates [Ru(NO)ClnBr5–n]2–, n = 0–5, and the Crystal Structure of (CH2py2)[Ru(NO)ClBr4] By treatment of [Ru(NO)Cl5]2– with anhydrous HBr in dichloromethane a mixture of [Ru(NO)ClnBr5–n]2–, n = 0–5, is formed, from which individual complexes can be separated by ion exchange chromatography on diethylaminoethyl cellulose. The X-Ray structure determination on a single crystal of (CH2py2)[Ru(NO)ClBr4] (monoclinic, space group P21/c, a = 11.480(2), b = 10.175(4), c = 16.025(6) Å, β = 107.40(1)°, Z = 4) reveals, that the chlorine atom is trans positioned to the nitrosyl group. The low temperature IR and Raman spectra have been recorded of six complexes of the series (n-Bu4N)2[Ru(NO)ClnBr5–n], n = 0–5, and are assigned by normal coordinate analysis. A good agreement between observed and calculated frequencies is achieved. The valence force constants are fd(NO) = 13.86–13.93 und fd(RuN) = 5.43–5.49 mdyn/Å.  相似文献   

16.
New Thiophosphates: The Compounds Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) and Ag3Y(PS4)2 The new thiophosphates Li6Ln3(PS4)5 (Ln: Y, Gd, Dy, Yb, Lu) were synthesized by heating mixtures of Ln, P, S, and Li2S4 at 900 °C (100 h) and they were investigated by single crystal X‐ray methods. The compounds with Ln = Y (a = 28.390(2), b = 10.068(1), c = 33.715(2) Å, β = 113.85(1)°), Gd (a = 28.327(2), b = 10.074(1), c = 33.822(2) Å, β = 114.297(7)°), Dy (a = 28.124(6), b = 10.003(2), c = 33.486(7) Å, β = 113.89(3)°), Yb (a = 28.178(3), b = 9.977(1), c = 33.392(4) Å, β = 113.65(1)°), and Lu (a = 28.169(6), b = 10.002(2), c = 33.432(7) Å, β = 113.54(3)°) are isotypic and crystallize in a new structure type (C2/c; Z = 12). Main feature are PS4 tetrahedra isolated from each other surrounding the Ln and Li atoms via their S atoms. The coordination number of the five crystallographically independent Ln atoms is eight, but the polyhedra are quite different and they are interlinked to larger units extending in [010]. The environment of the Li atoms is irregular and formed by five to six S atoms. The crystal structure is compared with that of Li9Ln2(PS4)5 (Ln: Nd, Gd). For the synthesis of Ag3Y(PS4)2 (a = 16.874(3), b = 9.190(2), c = 9.312(2) Å, β = 123.17(3)°) a mixture of Y, P, S, and Ag2S was heated to 700 °C (50 h). The thiophosphate crystallizes in a new structure type (C2/c; Z = 4) composed of isolated PS4 tetrahedra. The two crystallographically independent Ag atoms are surrounded by four S atoms in the shape of distorted tetrahedra. The Ag(1)S4 polyhedra are cornershared to strands running along [001], which are linked together via Ag(2)S4 tetrahedra. The environment of the Y atoms is composed of eight S atoms each building distorted square antiprisms. These polyhedra are connected with each other via common edges to a strand running along [001].  相似文献   

17.
Several rare‐earth cyclotriphosphate hydrates were obtained from mixtures of sodium cyclotriphosphates and the respective rare‐earth chlorides. Nd(P3O9) · 3H2O [P$\bar{6}$ , Z = 3, a = 677.90(9), c = 608.67(9) pm, R1 = 0.016, wR2 = 0.038, 312 data, 36 parameters] was obtained by a solid state reaction and is isotypic with respective rare‐earth phosphate hydrates, while all the others adopt new structure types. Nd(P3O9) · 4.5H2O [C2/c, Z = 8, a = 1644.6(3), b = 756.11(15), c = 1856.1(4) pm, β = 97.25(3)°, R1 = 0.032, wR2 = 0.081, 1763 data, 194 parameters], Nd(P3O9) · 5H2O [P21/c, Z = 4, a = 773.75(15), b = 1149.1(2), c = 1394.9(3) pm, β = 106.07(3)°, R1 = 0.042, wR2 = 0.082, 1338 data, 194 parameters], Pr(P3O9) · 5H2O [P$\bar{1}$ , Z = 2, a = 745.64(15), b = 889.07(18), c = 934.55(19) pm, α = 79.00(3), β = 80.25(3), γ = 66.48(3), R1 = 0.059, wR2 = 0.089, 1468 data, 193 parameters], Na3Nd(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1059.78(18), b = 1207.25(15), c = 1645.7(4) pm, β = 99.742(17), R1 = 0.047, wR2 = 0.119, 1109 data, 351 parameters] and Na3Pr(P3O9)2 · 6H2O [P21/n, Z = 4, a = 1061.42(16), b = 1209.0(2), c = 1635.5(3) pm, β = 99.841(13), R1 = 0.035, wR2 = 0.062, 1323 data, 350 parameters] were obtained by careful crystallization at room temperature. A thorough structure discussion is given. The infrared spectrum of Nd(P3O9) · 4.5H2O is also reported.  相似文献   

18.
Preparation and Crystal Structure of Ln3TiO4Cl5 (Ln = La?Nd) – the First Oxochlortitanates of Rare Earth The compounds Ln3TiO4Cl5 have been prepared by reaction of LnCl3/LnOCl/TiO2 (1:2:1) (Ln = La?Nd) in evacuated silica ampoules. Single crystals of La3TiO4Cl5 were obtained by chemical transport reaction (T2 → T1; T2 = 1050°C, T1 = 950°C) using chlorine (p(Cl2; 298 K) = 1 atm) and sulfur as transport agents with La2TiO5 as starting material. La3TiO4Cl5 crystallizes in the orthorhombic space group Pnma (No. 62) with cell-dimensions a = 16.760(2) Å, b = 4.0991(6) Å, c = 14.634(2) Å, Z = 4. The structure was refined to give R = 4.76%, Rw = 2.47%. Main building units are TiO5 trigonal bipyramides and threefold capped trigonal prisms around La. The relationship to La2TaO4Cl3 will be discussed.  相似文献   

19.
Syntheses and Properties of cis -Diacidophthalocyaninato(2–)thallates(III); Crystal Structure of Tetra(n-butyl)ammonium cis -dinitrito(O,O ′)- and cis -dichlorophthalocyaninato(2–)thallate(III) Blue green cis-diacidophthalocyaninato(2–)thallate(III), cis[Tl(X)2pc2–] (X = Cl, ONO′, NCO) is prepared from iodophthalocyaninato(2–)thallium(III) and the corresponding tetra(n-butyl)ammonium salt, (nBu4N)X in dichloromethane, and isolated as (nBu4N)cis[Tl(X)2pc2–]. (nBu4N)cis[Tl(ONO′)2pc2–] ( 1 ) and (nBu4N)cis[Tl(X)2pc2–] · 0,5 (C2H5)2O ( 2 ) crystallize in the monoclinic space group P21/n with cell parameters for 1: a = 14.496(2) Å, b = 17.293(5) Å, c = 18.293(2) Å, β = 98.76(1)° resp. for 2 : a = 13.146(1) Å, b = 14.204(5) Å, c = 24.900(3) Å, β = 93.88(1)°; Z = 4. In 1 , the octa-coordinated Tl atom is surrounded by four isoindole-N atoms (Niso) and four O atoms of the bidental nitrito(O,O′) ligands in a distorted antiprism. The Tl–Niso distances vary between 2.257(3) and 2.312(3) Å, the Tl–O distances between 2.408(3) and 2.562(3) Å. In 2 , the hexa-coordinated Tl atom ligates four Niso atoms and two Cl atoms in a typical cis-arrangement. The average Tl–Niso distance is 2.276 Å, the average Tl–Cl distance is 2.550 Å. In 1 and 2 , the Tl atom is directed out of the centre of the (Niso)4 plane (CtN) towards the acido ligands (d(Tl–CtN) = 1.144(1) Å in 1 , 1.116(2) Å in 2 ), and the phthalocyaninato ligand is concavely distorted. The vertical displacements of the periphereal C atoms amounts up to 0.82 Å. The optical and vibrational spectra as well as the electrochemical properties are discussed.  相似文献   

20.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号