首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Methods for the determination of aluminium and manganese in human scalp hair samples by electrothermal atomic absorption spectrometry using the slurry sampling technique were developed. Palladium and magnesium nitrate were used as chemical modifiers. Hair samples were pulverized using a zirconia vibrational mill ball, and were prepared as aqueous slurries. Determinations can be performed in the linear ranges of 1.9–150 μg l−1 Al3+ and 0.03–10.0 μg l−1 Mn2+. Limits of detection of 0.9 mg kg−1 and 27.6 μg kg−1 were obtained for aluminium and manganese, respectively. The analytical recoveries were between 99.6 and 101.8% for aluminium and in the 98.3–101.3% range for manganese. The repeatability of the methods (n=11), slurry preparation procedure and ETAAS measurement, was 16.0 and 7.9% for aluminium and manganese, respectively. The methods were finally applied to the aluminium and manganese determination in 25 scalp hair samples from healthy adults. The levels for aluminium were between 8.21 and 74.08 mg kg−1, while concentrations between 0.03 and 1.20 mg kg−1 were found for manganese.  相似文献   

2.
Fuh MR  Chan SA 《Talanta》2001,55(6):1127-1139
This paper describes a newly developed liquid chromatography–electrospray-mass spectrometry (LC–ES-MS) method for the quantitative determination of nine commonly used sulfonamides (sulfadiazine, sulfapyridine, sulfamerazine, sulfamethazine, sulfamonomethoxine, sulfisoxazole, sulfadimethoxine, sulfaquinoaline and sulfaphenazole) in meat. [M+H]+ and [M+Na]+ were the two major ions detected in positive ion mode. Selective ion monitoring was employed for quantitative determination. Satisfactory linearity, 0.1–10 μg ml−1, of each compound was obtained. Blank meat samples were fortified at levels between 50 and 500 μg kg−1. [Phenyl-13C6]sulfamethazine was used as internal standard. Sulfonamides were isolated from meat with a solvent extraction procedure and then determined by LC–ES-MS. The limits of detection were below 10 μg kg−1. The application of this newly developed method was demonstrated by analyzing various beef, pork and chicken samples from local markets.  相似文献   

3.
A sensitive and specific monoclonal ELISA for the determination of tissue bound furazolidone metabolite 3-amino-2-oxazolidinone (AOZ) is described. The procedure enables the detection of AOZ in matrix supernatant after homogenisation, protease treatment, acid hydrolysis and derivatisation of AOZ released from the tissue by o-nitrobenzaldehyde. The formed p-nitrophenyl 3-amino-2-oxazolidinone (NPAOZ) is determined by ELISA calibrated with matrix-matched standards in the concentration range of 0.05–5.0 μg I−1. The assay was validated according to criteria set down by Commission Decision 2002/657/EC for the performance and validation of analytical methods for chemical residues. Detection capability, set on the basis of acceptance of no false negative results, was 0.4 μg kg−1 for shrimp, poultry, beef and pork muscle. This sensitivity approaches the established confirmatory LC–MS/MS able to quantify tissue-bound AOZ at levels as low as 0.3 μg kg−1. An excellent correlation of results obtained by ELISA and LC/MS–MS within the concentration range 0–32.1 μg kg−1 was found in the naturally contaminated shrimp samples (r = 0.999, n = 8). A similar correlation was found for the incurred poultry samples within the concentration range of 0–10.5 μg kg−1 (r = 0.99, n = 8).  相似文献   

4.
Arancibia V  López A  Zúñiga MC  Segura R 《Talanta》2006,68(5):1567-1573
The separation of arsenic based on in situ chelation with ammonium diethyl dithiophosphate (ADDTP) has been carried out using methanol-modified supercritical CO2. Aliquots of extract were added to an electroanalytical cell and arsenic was determined by square wave cathodic stripping voltammetry (SWCSV) at a hanging mercury drop electrode (HMDE). Quantitative extractions of As(DDTP)3 were achieved when the experiments were carried out at a pressure of 2500 psi, a temperature of 90 °C, 2.0 mL of methanol, 20.0 min of static extraction and 5.0 min of dynamic extraction in the presence of 18 mg of ADDTP. Analysis of arsenic was made using 150 mg L−1 of Cu(II) in 1 M HCl solution as supporting electrolyte in the presence of ADDTP as ligand. Preconcentration was carried out by deposition at a potential of −0.50 V and the intermetallic compound CuxAsy was reduced at a potential of −0.77 to −0.82 V, depending on ligand concentration. The results showed that the presence of ligand plays an important role, increasing the method's sensitivity and preventing the oxidation of As(III). The calibration graph of the As(DDTP)3 solution was linear from 0.8 to 12.5 μg L−1 of arsenic (LOD 0.5 μg L−1, R = 0.9992, tacc = 60 s). The method was validated using carrot pulp spiked with arsenic solution. This method was applied to the determination of arsenic in samples of carrots, beets and irrigation water. Arsenic in beets was: skin 4.10 ± 0.18 mg kg−1; pulp 3.83 ± 0.19 mg kg−1 and juice 0.71 ± 0.09 mg L−1; arsenic in carrots was: skin 2.15 ± 0.09 mg kg−1; pulp 0.59 ± 0.11 mg kg−1 and juice 0.71 ± 0.03 mg L−1. Arsenic in water were: Chiu-Chiu 0.08 mg L−1, Inacaliri 1.12 mg L−1, and Salado river 0.17 ± 0.07 mg L−1.  相似文献   

5.
de Jesus A  Silva MM  Vale MG 《Talanta》2008,74(5):1378-1384
A new method for F AAS determination of sodium and potassium in biodiesel using water-in-oil microemulsion as sample preparation is proposed. The method was investigated for biodiesel produced from different sources, as soybean, castor and sunflower oil and animal fat and was also applied for vegetable oils. The optimized condition for microemulsion formation was 57.6% (w/w) of n-pentanol, 20% (w/w) of biodiesel or vegetable oil, 14.4% (w/w) of Triton X-100 and 8% (w/w) of water (aqueous standard of KCl or NaCl in/or diluted HNO3). The optimized instrumental parameters were: aspiration rate of 2 mL min−1 and the flame composition of 0.131 of C2H2/air ratio. For comparison purpose, the determination of sodium and potassium were also carried out according to European norms (EN 14108 and EN 14109, respectively). These norms are applied for determination of sodium and potassium in fatty acid methylic ester samples and consist in the sample dilution using organic solvent and determination by F AAS. The stability of microemulsified aqueous standards and samples was investigated and it was found to be stable for at least 3 days while the organic standard diluted with xylene showed a decrease around of 15% in the analytical signal in 1 h. The limits of detection were 0.1 μg g−1 and 0.06 μg g−1 and the obtained characteristic concentrations were 25 μg L−1 and 28 μg L−1 for sodium and potassium, respectively. The proposed method presented two times better limits of detection and better precision (0.4–1.0%) when compared with the dilution technique (1.5–4.5%). The accuracy of the method was evaluated through recovery tests and comparison with the results obtained by dilution technique. The recoveries ranged from 95% to 115% for biodiesel and 90% to 115% for vegetable oil samples. Comparison between the results obtained for biodiesel by both methods showed no significant differences at the 95% confidence level according to a Student's t-test. This study shows that the proposed method based on microemulsion as sample preparation can be applied as an efficient alternative for sodium and potassium determination in biodiesel samples.  相似文献   

6.
Acrylamide levels over a wide range of different food products were analysed using both liquid chromatography–tandem mass spectrometry (HPLC–MS–MS) and gas chromatography–tandem mass spectrometry (GC–MS–MS). Two different sample preparation methods for HPLC–MS–MS analysis were developed and optimised with respect to a high sample throughput on the one hand, and a robust and reliable analysis of difficult matrices on the other hand. The first method is applicable to various foods like potato chips, French fries, cereals, bread, and roasted coffee, allowing the analysis of up to 60 samples per technician and day. The second preparation method is not as simple and fast but enables analysis of difficult matrices like cacao, soluble coffee, molasses, or malt. In addition, this method produces extracts which are also well suited for GC–MS–MS analysis. GC–MS–MS has proven to be a sensitive and selective method offering two transitions for acrylamide even at low levels up to 1 μg kg−1. For the respective methods the repeatability (n=10), given as coefficient of variation, ranged from 3% (acrylamide content of 550 μg kg−1) to 12% (acrylamide content of 8 μg kg−1) depending on the food matrix. The repeatability (n=3) for different food samples spiked with acrylamide (5–1500 μg kg−1) ranged from 1 to 20% depending on the spiking level and the food matrix. The limit of quantification (referred to a signal-to-noise ratio of 9:1) was 30 μg kg−1 for HPLC–MS–MS and 5 μg kg−1 for GC–MS–MS. It could be demonstrated that measurement uncertainties were not only a result of analytical variability but also of inhomogeneity and stability of the acrylamide in food.  相似文献   

7.
Aceto Balsamico Tradizionale of Modena (ABTM) is a typical product (PDO denomination) of the province of Modena produced by cooked grape must which undergoes a long ageing period (at least 12 years) in series of wooden casks (batterie). The study of the transformations of this product during ageing is extremely relevant in order to control the authenticity of ABTM towards succedaneous products and mislabelling of age.

This paper presents the results of the investigation of sugars and fixed organic acids in ABTM samples of different ages, coming from different batterie. The analytes were simultaneously determined by a gas chromatographic method optimised for this peculiar matrix.

The method shows good separation and resolution of the investigated chemical species and allows their determination in the concentration ranges reported in brackets: malic (7.6–15.5 g kg−1), tartaric (4.0–9.7 g kg−1), citric (0.6–1.5 g kg−1) and succinic (0.36–0.62 g kg−1) acid and glucose (153–294 g kg−1), fructose (131–279 g kg−1), xylose (011–0.39 g kg−1), ribose (0.078–0.429 g kg−1), rhamnose (0.061–0.195 g kg−1), galactose (0.136–0.388 g kg−1), mannose (0.41–1.46 g kg−1), arabinose (0.33–1.00 g kg−1) and sucrose (0.46–6.84 g kg−1), with mean associated errors ranging from 5 to 19% depending on the analytes.

Moreover, the recovery values are always satisfactory, being close to one for most of the analytes.

Furthermore, in order to assess the degree of variability of the different analytes content with vinegar ageing and the similarity/dissimilarity among series of casks a three-way data analysis method (Tucker3) is proposed. The chemometric technique applied on the data set shows differences between the samples on the bases of their different ageing period, and between the batterie, which traditionally have an own peculiar production procedure.  相似文献   


8.
Wang J  Zhang C  Wang H  Yang F  Zhang X 《Talanta》2001,54(6):146-1193
A simple, fast chemiluminescence (CL) flow-injection method based on the reaction of luminol with H2O2 in the presence of a cationic surfactant (cyltrimethylammonium bromide, CTMAB) has been described for the direct determination of dichlorvos pesticide (DDVP). Under the optimal conditions, the CL intensity was linear to the DDVP concentration in the range of 0.02–3.1 μg ml−1 (r=0.9998, n=10). The relative standard deviation was 3.4% at 0.35 μg ml−1 (n=10), with a detection limit (3σ) of 0.008 μg ml−1 DDVP. The possible reaction mechanism was also discussed. This method has been successfully applied to the determination of trace DDVP residue in vegetable sample and results have been compared with that of the UV method.  相似文献   

9.
9-acetoxy-2,7,12,17-tetrakis-(β-methoxyethyl)-porphycene (ATMPn) is a chemically pure substance with fast pharmacokinetics and superior photodynamic properties in vitro as compared to Photofrin®. In this study the pharmacokinetics, photodynamic efficacy and tissue localization of ATMPn were investigated in vivo.

Amelanotic melanomas (A-Mel-3) were implanted in dorsal skin fold chambers fitted to Syrian Golden hamsters. Fluorescence kinetics of ATMPn (1.4 μmol kg−1 b.w.i.v; n = 8) were monitored by intravital microscopy. Quantitative measurements of fluorescence intensity were carried out by digital image analysis. For tumor growth studies 1.4 μmol kg−1 was injected 24 h (n = 3), 3 h (n = 3), 1 min (n = 6) and 2.8 μmol kg−1 1 min (n = 6) before PDT (Laser (630 nm) or lamp (600–750 nm), 100 mW cm−2, 100 J cm−2). Tumor volume was measured for 28 d. Solid tumors (n = 3) were excised 1 min after injection of ATMPn (2.8 μmol kg−1) and cryostat sections (20 mm) were analyzed by confocal laser scanning microscopy (CLSM) for tissue localization of the dye.

Maximal fluorescence (mean ± S.E.) arose in the tumor (94 ± 7%) and surrounding host tissue (67 ± 5%) 30 s post injection followed by a rapid decrease. Hardly any fluorescence was detectable 12 h after administration. Only PDT 1 min after injection of ATMPn was effective yielding 3/6 complete remissions (2.8 mmol kg−1, laser) and 6/6 complete remissions (2.8 μmol kg−1, lamp), respectively. One minute after injection the dye is primarily localized in the vascular wall of normal and tumor vessels as shown by CLSM.

PDT at a time, when the dye is localized primarily in the tumor microcirculation, exhibits the best tumor killing effects showing that vascular targeting is effective in treating solid malignant tumors. ATMPn in liposomes makes administration and light irradiation in one session possible due to its fast pharmacokinetics. Thus, using ATMPn as a photosensitizer may provide more flexibility to perform PDT after surgical exploration and debulking as adjuvant therapy.  相似文献   


10.
Agnihotri NK  Singh VK  Singh HB 《Talanta》1993,40(12):1851-1859
Derivative photometric methods for trace analysis of Th(IV) and UO2(II), and their simultaneous determination in mixtures using 5,8-dihydroxy-1,4-naphthoquinone in a micellar medium are reported. Molar absorptivity and Sandell's sensitivity of 1:2 Th(IV) and 1:1 UO2(II) complexes at their λmax, 614.5 nm and 637.0 nm are, 1.19 × 104 1/mol/cm and 1.12 × 104 1/mol/cm and 1.95 × 10−2 μg/cm2 and 2.13 × 10−2 μg/cm2 μg/cm2, respectively. Calibration graph is linear over the range 9.28 × 10−2−18.56 μg/ml of Th(IV) and 9.52 × 10−2−19.04 μg/ml of UO2(II). Though presence of Th(IV) and UO2(II) causes interference in each others determination, 9.28 × 10−1−9.28 μg/ml Th(IV) and 9.52 × 10−1−9.52 μg/ml UO2(II) when present together, can be simultaneously determined using derivative spectra.  相似文献   

11.
A method for the determination of total selenium in serum samples by graphite furnace atomic absorption spectrometry was evaluated. The method involved direct introduction of 1:5 diluted serum samples (1% v/v NH4OH+0.05% w/v Triton X-100®) into transversely heated graphite tubes, and the use of 10 μg Pd+3 μg Mg(NO3)2 as chemical modifier. Optimization of the modifier mass and the atomization temperature was conducted by simultaneously varying such parameters and evaluating both the integrated absorbance and the peak height/peak area ratio. The latter allowed the selection of compromise conditions rendering good sensitivity and adequate analyte peak profiles. A characteristic mass of 49 pg and a detection limit (3s) of 6 μg 1−1 Se, corresponding to 30 μg l−1 Se in the serum sample, were obtained. The analyte addition technique was used for calibration. The accuracy was assessed by the determination of total selenium in Seronorm™ Trace Elements Serum Batch 116 (Nycomed Pharma AS). The method was applied for the determination of total selenium in ten serum samples taken from individuals with no known physical affection. The selenium concentration ranged between 79 and 147 μg l−1, with a mean value of 114±22 μg l−1.  相似文献   

12.
This paper describes a method for the simultaneous determination of As(III), Sb(III) and Se(IV) by combining hydride generation and gas phase molecular absorption spectrometry. A system for continuous hydride generation has been designed and developed, based on the use of a double process of gas-liquid separation, and optimal compromise operation conditions for the three compounds have been found. After generation, the hydrides are collected in a liquid nitrogen cryogenic trap, and then evaporated and driven to the flow cell of a diode array spectrophotometer, in which the transient signals over the 190–250 nm wavelength interval are measured. Under the recommended conditions (sample flow: 35 ml min−1, 0.5 M HCl; reductor flow: 4 ml min−1 of 4% NaBH4, solution) linear response ranges above 50 μg 1−1 for As(III), 30 μg 1−1 for Sb(III) and 200 μg 1−1 for Se(IV) are obtained with detection limits of 22 μg 1−1, 15 μg 1−1 and 65 μg 1−1, respectively. Multiwavelength linear regression equations were used for the simultaneous determination of the three elements in different synthetic samples, with good precision and accuracy and to study simultaneously the interference from different chemical species for the three compounds. Results were similar to those obtained by other techniques using hydride generation.  相似文献   

13.
A new method has been developed for ion-interaction chromatography with suppressed conductivity detection and a new graphitized carbon packing, which is sintered from carbonic material at a high temperature. Combinations of various eluting agents, tetrabutylammonium hydroxide (TBA) and acetonitrile have been investigated to optimize the separation of eight common anions (F, Cl, NO2, Br, NO3, SO42−, HPO42− and I). Calibration curves were linear from 0.5 to 10 μg/ml for F, from 1.0 to 20 μg/ml for Cl, NO2 and NO3, from 2.5 to 50 μg/ml for Br and SO42− and from 5.0 to 100 μg/ml for HPO42− and I with a correlation coefficient (r) of 0.999 or better. The relative standard deviations (R.S.D.s) of peak areas were between 0.2 and 0.9% for 10 repeated measurements. The application of this newly developed method was demonstrated by the determination of chloride, bromide and sulfate in pharmaceutical compounds using the direct injection method. The analytical results were within ±2% (relative) of the theoretical value, and thus in good agreement with the theoretical value for each sample.  相似文献   

14.
Matoso E  Kubota LT  Cadore S 《Talanta》2003,60(6):1105-1111
An analytical method using silica gel chemically modified with zirconium (IV) phosphate for preconcentration of lead and copper, in a column system, and their sequential determination by flame atomic absorption spectrometry (FAAS), was developed. Sample solutions are passed through a glass column packed with 100 mg of the sorbent material, at pH 4.5, and lead and copper are eluted with 1.0 mol l−1 HNO3 at a flow rate of 2.0 ml min−1. The extraction of copper is affected by Fe(II), Mn(II), Zn(II), Ni(II) and Co(II) while only Fe(II) interferes in the lead determination. These interferences may be overcome with an appropriate addition of a KI or NaF solution. An enrichment factor of 30 was obtained for both metals. While the limits of detection (3σ) were 6.1 and 1.1 μg l−1, for Pb and Cu, respectively, the limits of determination were 16.7 and 3.3 μg l−1. The precision expressed as relative standard deviation (R.S.D.) obtained for 3.3 μg l−1 of Cu and 16.7 μg l−1 of Pb were 4.3 and 4.7%, respectively, calculated from ten measurements. The proposed method was evaluated with reference material and was applied for the determination of lead and copper in industrial and river waters.  相似文献   

15.
Du J  Li Y  Lu J 《Talanta》2001,55(6):183-1058
It was found that the weak chemiluminescence produced from the reaction of polyhydroxy phenols with luminol in alkaline solution could be strongly enhanced by ferricyanide and ferrocyanide. Based on this found, a new flow injection chemiluminescence method is proposed for the determination of four polyhydroxy phenols: pyrogallol, phlorglucinol, quinol and resorcinol. The detection limits of the method are 0.03 μg ml−1 pyrogallol, 0.03 μg ml−1 phlorglucinol, 0.04 μg ml−1 quinol, and 0.02 μg ml−1 resorcinol. The possible mechanism of CL reactions is also discussed briefly.  相似文献   

16.
A simple and rapid flow injection (FI) method is reported for the determination of phosphate (as molybdate reactive P) in freshwaters based on luminol chemiluminescence (CL) detection. The molybdophosphoric heteropoly acid formed by phosphate and ammonium molybdate in acidic conditions generated chemiluminescence emission via the oxidation of luminol. The detection limit (3× standard deviation of blank) was 0.03 μg P l−1 (1.0 nM), with a sample throughput of 180 h−1. The calibration graph was linear over the range 0.032–3.26 μg P l−1 (r2=0.9880) with relative standard deviations (n=4) in the range 1.2–4.7%. Interfering cations (Ca(II), Mg(II), Ni(II), Zn(II), Cu(II), Co(II), Fe(II) and Fe(III)) were removed by passing the sample through an in-line iminodiacetate chelating column. Silicate interference (at 5 mg Si l−1) was effectively masked by the addition of tartaric acid and other common anions (Cl, SO42−, HCO3, NO3 and NO2) did not interfere at their maximum admissible concentrations in freshwaters. The method was applied to freshwater samples and the results (26.1±1.1–62.0±0.4 μg P l−1) were not significantly different (P=0.05) from results obtained using a segmented flow analyser method with spectrophotometric detection (24.4±4.45–84.0±16.0 μg P l−1).  相似文献   

17.
A reversed flow injection colorimetric procedure for determining iron(III) at the μg level was proposed. It is based on the reaction between iron(III) with norfloxacin (NRF) in 0.07 mol l−1 ammonium sulfate solution, resulting in an intense yellow complex with a suitable absorption at 435 nm. Optimum conditions for determining iron(III) were investigated by univariate method. The method involved injection of a 150 μl of 0.04% w/v colorimetric reagent solution into a merged streams of sample and/or standard solution containing iron(III) and 0.07 mol l−1 ammonium sulfate in sulfuric acid (pH 3.5) solution which was then passed through a single bead string reactor. Subsequently the absorbance as peak height was monitored at 435 nm. Beer's law obeyed over the range of 0.2–1.4 μg ml−1 iron(III). The method has been applied to the determination of total iron in water samples digested with HNO3–H2O2 (1:9 v/v). Detection limit (3σ) was 0.01 μg ml−1 the sample through of 86 h−1 and the coefficient of variation of 1.77% (n=12) for 1 μg ml−1 Fe(III) were achieved with the recovery of the spiked Fe(III) of 92.6–99.8%.  相似文献   

18.
A method for the determination of silicon by inductively coupled plasma atomic emission spectrometry (ICP-AES) is described. The procedure is based on a discontinuous generation of volatile silicon tetrafluoride in concentrated sulphuric acid medium after injecting 125 μl of 0.1%, w/v sodium fluoride solution into 100 μl of the sample. The gaseous silicon tetrafluoride is fed directly into the ICP torch by a flow of 250 ml min−1 Ar carrier gas. The calibration curve was linear up to at least 100 μg ml−1 of Si(IV) and the absolute detection limit was 9.8 ng working with a solution volume of 100 μl. The relative standard deviation for six measurements of 10 μg ml−1 of Si(IV) was 2.32%. The method was applied to the determination of silicon in water and iron ores.  相似文献   

19.
Ahmed MJ  Banoo S 《Talanta》1999,48(5):711-1094
The very sensitive, fairly selective direct spectrophotometric method for the determination of trace amount of vanadium (V) with 1,5-diphenylcarbohydrazide (1,5-diphenylcarbazide) has been developed. 1,5-diphenylcarbohydrazide (DPCH) reacts in slightly acidic (0.0001–0.001 M H2SO4 or pH 4.0–5.5) 50% acetonic media with vanadium (V) to give a red–violet chelate which has an absorption maximum at 531 nm. The average molar absorption coefficient and Sandell’s sensitivity were found to be 4.23×104 l mol−1 cm−1 and 10 ng cm−2 of Vv, respectively. Linear calibration graph were obtained for 0.1–30 μg ml−1 of Vv: the stoichiometric composition of the chelate is 1:3 (V: DPCH). The reaction is instantaneous and absorbance remain stable for 48 h. The interference from over 50 cations, anions and complexing agents has been studied at 1 μg ml−1 of Vv. The method was successfully used in the determination of vanadium in several standard reference materials (alloys and steels), environmental waters (potable and polluted), biological samples (human blood and urine), soil samples, solution containing both vanadium (V) and vanadium (IV) and complex synthetic mixtures. The method has high precision and accuracy (s=±0.01 for 0.5 μg ml−1).  相似文献   

20.
Arancibia JA  Escandar GM 《Talanta》2003,60(6):1113-1121
Two different spectrofluorimetric methods for the determination of piroxicam (PX) in serum are presented and discussed. One of them is based on the use of three-way fluorescence data and multivariate calibration performed with parallel factor analysis (PARAFAC) and self-weighted alternating trilinear decomposition (SWATLD). This methodology exploits the so-called second-order advantage of the three-way data, allowing to obtain the concentration of the studied analyte in the presence of any number of uncalibrated (serum) components. The method was developed following two different procedures: internal standard addition and external calibration with standard solutions, which were compared and discussed. The second approach investigated is based on the combination of solid-phase extraction (SPE) and room temperature fluorimetry. Both methods here presented yield satisfactory results. The concentration range in which PX could be determined in serum was 1–10 μg ml−1. The limits of quantification for the experimental solutions using the chemometric approach were 0.09 μg ml−1 for the standard addition mode and 0.12 μg ml−1 using external calibration (both for PARAFAC and SWATLD algorithms). In the solid-surface fluorimetric method, the calibration graph was linear up to 0.22 μg ml−1 and the limit of quantification was 0.02 μg ml−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号