首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, a simple, rapid, and sensitive method for the determination of nitrite (NO2?) in food samples by high‐performance liquid chromatography with fluorescence detection in acidic conditions had been developed. The derivatization of the nitrite with 2,3‐diaminonaphthalene was performed in acidic conditions to yield the highly fluorescent 2,3‐naphthotriazole, which was directly analyzed by high‐performance liquid chromatography with fluorescence detection without adjusting the solution to alkaline. The analysis column was reversed‐phase C8 column. A constant flow rate of 1.0 mL/min was employed using water/acetonitrile as the mobile phase in isocratic mode (70:30, v/v). Fluorescence was monitored with excitation at 375 nm and emission at 415 nm. The standard calibration curves were linear for nitrite in different matrixes in the concentration range of 0–100 μg/L, and the correlation coefficients ranged from 0.9978 to 0.9998. The limits of detection and quantification were in the ranges of 0.012–0.060 and 0.040–0.20 mg/kg, respectively. The recoveries of nitrite from samples spiked at three different concentrations were 74.0–113.2%, and the relative standard deviations of the recovery results (n = 6) were 1.67–10.8%. The proposed method has good repeatability and is very sensitive and simple. It has been successfully used to determine nitrite in foods.  相似文献   

2.
A simple and selective high‐performance liquid chromatography method coupled with fluorescence detection was developed for the simultaneous measurement of trace levels of four estrogens (estrone, estradiol, estriol and 17α‐ethynyl estradiol) in environmental matrices. For feces samples, solid–liquid extraction was applied with a 1:1 v/v mixture of acetonitrile and ethyl acetate as the extraction solvent. For liquid samples (e.g., leachate and groundwater), hydrophobic/lipophilic balanced automated solid‐phase extraction disks were selected due to their high recoveries compared to conventional C18 disks. Chromatographic separations were performed on a reversed‐phase C18 column gradient‐eluted with a 45:55 v/v mixture of acetonitrile and water. The detection limits were down to 1.1 × 10?2 (estrone), 4.11 × 10?4 (estradiol), 5.2 × 10?3 (estriol) and 7.18 × 10?3 μg/L (17α‐ethynyl estradiol) at excitation/emission wavelengths of 288/310 nm, with recoveries in the range of 96.9 ± 3.2–105.4 ± 3.2% (n = 3). The method was successfully applied to determine estrogens in feces and water samples collected at livestock farms and a major river in Northeast China. We observed relatively high abundance and widespread distribution of all four estrogens in our sample collections, implying the urgency for a comprehensive and intricate investigation of estrogenic fate and contamination in our researched area.  相似文献   

3.
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened.  相似文献   

4.
In the initial phase of this study, graphene oxide (GO)/silica was fabricated by assembling GO onto the silica particles, and then gold nanoparticles (GNPs) were used to modify the GO/silica to prepare a novel stationary phase for high‐performance liquid chromatography. The new stationary phase could be used in both reversed‐phase chromatography and hydrophilic interaction liquid chromatography modes. Good separations of alkylbenzenes, isomerides, amino acids, nucleosides, and nucleobases were achieved in both modes. Compared with the GO/silica phase and GNPs/silica phase, it is found that except for hydrophilicity, large π‐electron systems, hydrophobicity, and coordination functions, this new stationary phase also exhibited special separation performance due to the combination of 2D GO with zero‐dimensional GNPs.  相似文献   

5.
A reversed‐phase ion‐pair high‐performance liquid chromatography procedure was developed for the separation of polyprenyl diphosphate oligomer homologues obtained chemically from plant polyprenols. Tetrabutylammonium phosphate was used as the ion‐pair reagent, and the dependence of the separation quality on pH of ion‐pair reagent was investigated for the first time. The procedure is applicable for the control of commercial available polyprenyl monophosphates (the active components of veterinary drugs Phosprenyl and Gamapren) for the possible presence of polyprenyl diphosphate byproducts.  相似文献   

6.
Pheophytins and pyropheophytin are degradation products of chlorophyll pigments, and their ratios can be used as a sensitive indicator of stress during the manufacturing and storage of olive oil. They increase over time depending on the storage condition and if the oil is exposed to heat treatments during the refining process. The traditional analysis method includes solvent‐ and time‐consuming steps of solid‐phase extraction followed by analysis by high‐performance liquid chromatography with ultraviolet detection. We developed an improved dilute/fluorescence method where multi‐step sample preparation was replaced by a simple isopropanol dilution before the high‐performance liquid chromatography injection. A quaternary solvent gradient method was used to include a fourth strong solvent wash on a quaternary gradient pump, which avoided the need to premix any solvents and greatly reduced the oil residues on the column from previous analysis. This new method not only reduces analysis cost and time but shows reliability, repeatability, and improved sensitivity, especially important for low‐level samples.  相似文献   

7.
Vitamins A and E are fat‐soluble vitamins that play important roles in several physiological processes. Monitoring their concentrations is needed to detect deficiency and guide therapy. In this study, we developed a high‐performance liquid chromatography method to measure the major forms of vitamin A (retinol) and vitamin E (α‐tocopherol and γ‐tocopherol) in human blood plasma. Vitamins A and E were extracted with hexane and separated on a reversed‐phase column using methanol as the mobile phase. Retinol was detected by ultraviolet absorption, whereas tocopherols were detected by fluorescence emission. The chromatographic cycle time was 4.0 min per sample. The analytical measurement range was 0.03–5.14, 0.32–36.02, and 0.10–9.99 mg/L for retinol, α‐tocopherol, and γ‐tocopherol, respectively. Intr‐aassay and total coefficient of variation were <6.0% for all compounds. This method was traceable to standard reference materials offered by the National Institute of Standards and Technology. Reference intervals were established using plasma samples collected from 51 healthy adult donors and were found to be 0.30–1.20, 6.0–23.0, and 0.3–3.2 mg/L for retinol, α‐tocopherol, and γ‐tocopherol, respectively. In conclusion, we developed and validated a fast, simple, and sensitive high‐performance liquid chromatography method for measuring the major forms of vitamins A and E in human plasma.  相似文献   

8.
高效液相色谱-荧光检测法测定环境水中的苯胺和苯酚   总被引:9,自引:0,他引:9  
建立了用高效液相色谱荧光检测法同时测定环境水中苯胺和苯酚的分析方法。色谱柱为EclipseXDB C8(4.6mmi.d.×150mm,5μm),流动相为甲醇 磷酸盐缓冲液(0.1mol/L磷酸二氢钾 0 1mol/L磷酸氢二钠,pH6.87)V(甲醇)∶V(磷酸盐缓冲液)=50∶50,流速1 0mL/min,柱温25℃,检测波长0minλex/λem=230/340nm(测定苯胺),3.5minλex/λem=215/300nm(测定苯酚)。测定苯胺的线性范围0.2~120ng,r=0.9999,检出限0.01ng;测定苯酚的线性范围0.4~500ng,r=0.9998,检出限0.02ng,回收率98.1%~101.2%。该方法已用于对环境水中苯胺和苯酚的测定。  相似文献   

9.
A graphene oxide reinforced polymeric ionic liquids monolith was obtained by copolymerization of graphene oxide doped 1‐(3‐aminopropyl)‐3‐(4‐vinylbenzyl)imidazolium 4‐styrenesulfonate monomer and 1,6‐di‐(3‐vinylimidazolium) hexane bihexafluorophosphate cross‐linking agent. Coupled to high‐performance liquid chromatography, the monolith was used as a solid‐phase microextraction sorbent to analyze several phenolic compounds in aqueous samples. Under the optimized extraction and desorption conditions, linear ranges were 5–400 μg/L for 3‐nitrophenol, 2‐nitrophenol, and 2,5‐dichlorophenol and 2–400 μg/L for 4‐chlorophenol, 2‐methylphenol, and 2,4,6‐trichlorophenol (R2 = 0.9973–0.9988). The limits of detection were 0.5 μg/L for 3‐nitrophenol and 2‐nitrophenol and 0.2 μg/L for the rest of the analytes. The proposed method was used to determine target analytes in groundwater from an industrial park and river water. None of the analytes was detected. Relative recoveries were in the range of 75.5–113%.  相似文献   

10.
A new quantitative technique for the simultaneous quantification of the individual anthocyanins based on the pH differential method and high‐performance liquid chromatography with diode array detection is proposed in this paper. The six individual anthocyanins (cyanidin 3‐glucoside, cyanidin 3‐rutinoside, petunidin 3‐glucoside, petunidin 3‐rutinoside, and malvidin 3‐rutinoside) from mulberry (Morus rubra) and Liriope platyphylla were used for demonstration and validation. The elution of anthocyanins was performed using a C18 column with stepwise gradient elution and individual anthocyanins were identified by high‐performance liquid chromatography with tandem mass spectrometry. Based on the pH differential method, the high‐performance liquid chromatography peak areas of maximum and reference absorption wavelengths of anthocyanin extracts were conducted to quantify individual anthocyanins. The calibration curves for these anthocyanins were linear within the range of 10–5500 mg/L. The correlation coefficients (r2) all exceeded 0.9972, and the limits of detection were in the range of 1–4 mg/L at a signal‐to‐noise ratio ≥5 for these anthocyanins. The proposed quantitative analysis was reproducible with good accuracy of all individual anthocyanins ranging from 96.3 to 104.2% and relative recoveries were in the range 98.4–103.2%. The proposed technique is performed without anthocyanin standards and is a simple, rapid, accurate, and economical method to determine individual anthocyanin contents.  相似文献   

11.
Plant hormone determination in food matrices has attracted more and more attention because of their potential risks to human health. However, analytical methods for the analysis of multiple plant hormones remain poorly investigated. In the present study, a convenient, selective, and ultrasensitive high‐performance liquid chromatography method for the simultaneous determination of multiple classes of plant hormones has been developed successfully using dispersive liquid–liquid microextraction followed by precolumn fluorescent labeling. Eight plant hormones in fruits including jasmonic acid, 12‐oxo‐phytodienoic acid, indole‐3‐acetic acid, 3‐indolybutyric acid, 3‐indolepropionic acid, gibberellin A3, 1‐naphthylacetic acid, and 2‐naphthaleneacetic acid were analyzed by this method. The conditions employed for dispersive liquid–liquid microextraction were optimized systematically. The linearity for all plant hormones was found to be >0.9993 (R2 values). This method offered low detection limits of 0.19–0.44 ng/mL (at a signal‐to‐noise ratio of 3), and method accuracies were in the range of 92.32–103.10%. The proposed method was applied to determine plant hormones in five kinds of food samples, and this method can achieve a short analysis time, low threshold levels of detection, and a high specificity for the analysis of targeted plant hormones present at trace level concentrations in complex matrices.  相似文献   

12.
4,4′‐Diaminostilbene‐2,2′‐disulfonic acid based fluorescent whitening agents (DSD‐FWAs) are prohibited in food‐contact paper and board in many countries. In this work, a reliable high‐performance liquid chromatography method was developed for the simultaneous determination of 11 common DSD‐FWAs in paper material. Sample preparation and extraction as well as chromatographic separation of multicomponent DSD‐FWAs were successfully optimized. DSD‐FWAs in prepared samples were ultrasonically extracted with acetonitrile/water/triethylamine (40:60:1, v/v/v), separated on the C18 column with the mobile phase containing tetrabutylammonium bromide, and then detected by a fluorescence detector. The limits of detection were 0.12–0.24 mg/kg, and the calibration curves showed the linear correlation (R2 ≥ 0.9994) within the range of 8.0–100 ng/mL, which was equivalent to the range of 0.80–10 mg/kg in the sample. The average recoveries and the RSDs were 81–106% and 2–9% at two fortification levels (1.0 and 5.0 mg/kg) in paper bowls, respectively. The successful determination of 11 DSD‐FWAs in food‐contact paper and board obtained from local markets indicated that the newly developed method was rapid, accurate, and highly selective.  相似文献   

13.
Titanium(IV) tetraisopropoxide was employed as a metal oxide sol–gel precursor to prepare ceramic composite nanofibers by the electrospinning system. To facilitate this process and obtain the desired nanofibers with higher aspect ratios and surface area, poly(vinylpyrrolidone) was added to the sol of titania. Four ceramic nanofibers sheets based on titania were prepared while each sheet contained different transition metals such as Fe‐Mn, Fe‐Ni, Fe‐Co, and Fe‐Mn‐Co‐Ni. The scanning electron microscope images showed good homogeneity for all the prepared ceramic composites with a diameter range of 100–250 nm. The sorption efficiency was investigated by a micro‐solid‐phase extraction setup in online combination with high‐performance liquid chromatography for the determination of naproxen and clobetasol. All the prepared composites exhibited comparable efficiencies for the desired analytes and the type of metal showed insignificant effect. For the selected composite with Fe‐Mn, the linearity of the analytes was in the range of 1–1000 μg/L and the limit of detection values were found to be 2 and 0.3 μg/L for naproxen and clobetasol, respectively. The developed method was extended to the analysis of urine and blood plasma samples and acceptable relative standard deviations were obtained at two concentration levels.  相似文献   

14.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

15.
A new straightforward method based on cloud‐point extraction has been developed, optimized, and validated for the determination of doxepin in human plasma by high‐performance liquid chromatography separation and UV detection. The nonionic surfactant Triton X‐114 was chosen as the extraction solvent. Chromatography separation was performed on a μBondapakR C18 column (4.6 mm id × 300 mm, 3 μm particle size), which was used for isocratic elution at a detection wavelength of 289 nm. Under the optimum conditions, the linear range of doxepin in human plasma was 0.1–0.9 μg/mL. Also, the detection limit, preconcentration factor, and enrichment factor were 0.08 μg/mL, 50, and 49.0, respectively.  相似文献   

16.
A novel two‐step extraction technique combining ionic‐liquid‐based dispersive liquid–liquid microextraction with magnetic solid‐phase extraction was developed for the preconcentration and separation of aflatoxins in animal feedstuffs before high‐performance liquid chromatography coupled with fluorescence detection. In this work, ionic liquid 1‐octyl‐3‐methylimidazolium hexafluorophosphate was used as the extractant in dispersive liquid–liquid microextraction, and hydrophobic pelargonic acid modified Fe3O4 magnetic nanoparticles as an efficient adsorbent were applied to retrieve the aflatoxins‐containing ionic liquid. Notably, the target of magnetic nanoparticles was the ionic liquid rather than the aflatoxins. Because of the rapid mass transfer associated with the dispersive liquid–liquid microextraction and magnetic solid phase steps, fast extraction could be achieved. The main parameters affecting the extraction recoveries of aflatoxins were investigated and optimized. Under the optimum conditions, vortexing at 2500 rpm for 1 min in the dispersive liquid–liquid microextraction and magnetic solid‐phase extraction and then desorption by sonication for 2 min with acetonitrile as eluent. The recoveries were 90.3–103.7% with relative standard deviations of 3.2–6.4%. Good linearity was observed with correlation coefficients ranged from 0.9986 to 0.9995. The detection limits were 0.632, 0.087, 0.422 and 0.146 ng/mL for aflatoxins B1, B2, G1, and G2, respectively. The results were also compared with the pretreatment method carried out by conventional immunoaffinity columns.  相似文献   

17.
Cortex Moutan (Radicis Cortex Moutan), the dried root bark of Paeonia moutan and P. spp., contains a series of water‐soluble tannins. With the eight components, 1 4,6‐di‐O‐GG (4,6‐di‐O‐galloyl‐D‐glucose), 2 1,2,3,6‐tetra‐O‐GG, 3 1,2,3,4,6‐penta‐O‐GG, 4 1,3,4,6‐tetra‐O‐GG, 5 3,4,6‐tri‐O‐GG, 6 1,3,6‐tri‐O‐GG, 7 3,6‐di‐O‐GG, and 8 1,2,6‐tri‐O‐GG, as marker substances, a rapid and efficient method of analysis based on HPLC and CE was developed. Using a phosphate eluent, a 5C18‐MS separating column, and a detection wavelength of 280 nm, HPLC was successfully used to analyze the eight constituents within 60 min. The analysis can be completed within 50 min, using the MEKC mode with a buffer composed of borate, SDS, and isopropanol, and a detection wavelength of 210 nm. The detection limit for the marker substances varied from 0.04 to 0.93 μg/mL for the HPLC method and 0.02 to 0.36 μg/mL for the CE method.  相似文献   

18.
This paper reports the optimization of the on‐line coupling of 2,2′‐azinobis(3‐ethylbenzothiazoline)‐6‐sulfonic acid based radical scavenging assays with reversed‐phase high‐performance liquid chromatography. The residence time in the reactor was reduced to 6.4 s to ensure minimal peak broadening and loss of separation. Peak capacity losses between compound detection and measurement of the radical scavenging potential were reduced to 10% and lower on coupled column systems. The methodology was successfully applied for the detection of the scavenging activity of molecules encompassing a broad hydrophobicity range. The method shows promise for the assessment of low‐molecular‐weight polyphenols in red wine by coupled‐column high‐resolution high‐performance liquid chromatography with mass spectrometry analysis.  相似文献   

19.
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient.  相似文献   

20.
Stainless‐steel wires coated with mesoporous titanium oxide were placed into a polyether ether ketone tube for in‐tube solid‐phase microextraction, and the coating sorbent was characterized by X‐ray diffraction and scanning electron microscopy. It was combined with high‐performance liquid chromatography to build an online system. Using eight polycyclic aromatic hydrocarbons as the analytes, some conditions including sample flow rate, sample volume, organic solvent content, and desorption time were investigated. Under optimum conditions, an online analysis method was established and provided good linearity (0.03–30 μg/L), low detection limits (0.01–0.10 μg/L), and high enrichment factors (77.6–678). The method was applied to determine target analytes in river water and water sample of coal ash, and the recoveries are in the range of 80.6–106.6 and 80.9–103.5%, respectively. Compared with estrogens and plasticizers, extraction coating shows better extraction efficiency for polycyclic aromatic hydrocarbons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号