首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
A novel fully automated method based on dual column switching using turbulent flow chromatography followed by liquid chromatography with tandem mass spectrometry was developed for the determination of aflatoxin B1, B2, G1, and G2 in corn powder, edible oil, peanut butter, and soy sauce samples. After ultrasound‐assisted extraction, samples were directly injected to the chromatographic system and the analytes were concentrated into the clean‐up loading column. Through purge switching, the analytes were transferred to the analytical column for subsequent detection by mass spectrometry. Different types of TurboFlowTM columns, transfer flow rate, transfer time were optimized. The limits of detection and quantification of this method ranged between 0.2–2.0 and 0.5–4.0 μg/kg for aflatoxins in different matrixes, respectively. Recoveries of aflatoxins were in range of 83–108.1% for all samples, matrix effects were in range of 34.1–104.7%. The developed method has been successfully applied in the analysis of aflatoxin B1, B2, G1, and G2 in real samples.  相似文献   

2.
A new approach to the determination of afiatoxins B1, B2, G1 and G2 is given; the method involves high-performance liquid chromatography with amperometric detection in the differential-pulse mode at the dropping mercury electrode with 1-s drop time. These aflatoxins can be determined simultaneously with good resolution but with some compromise in sensitivity. The detection limit of underivatized aflatoxin standards is around 5 ng. Average recoveries of aflatoxins from peanut butter by the Beebe method were G2 81%, G1 87%, B2 77% and B1 76%.  相似文献   

3.
This article describes the use of microwave-assisted extraction (MAE) as a pretreatment technique for the determination of aflatoxins B1, G1, B2, and G2 in grains and grain products. The optimal operation parameters, including extraction solvent, temperature, and time, were identified to be acetonitrile as the extraction solvent at 80 °C with 15 min of MAE. The extracts were cleaned up using solid-phase extraction followed by derivatization with trifluoroacetic acid and were determined by liquid chromatography–fluorescence detection. A Sep-Pak cartridge was chosen over Oasis HLB and Bond Elut cartridges. By the use of aflatoxin M1 as an internal standard, relative recoveries of the aflatoxins ranged from 90.7 to 105.7 % for corn and from 88.1 to 103.4 % for wheat, with relative standard deviations between 2.5 and 8.7 %. A total of 36 samples from local markets were analyzed, and aflatoxin B1 was found to be the predominant toxin, with concentrations ranging from 0.42 to 3.41 μg/kg.
Figure
Methodology for aflatoxins B1, G1, B2 and G2 determination in grains and grain products.  相似文献   

4.
A new method named graphene‐coated magnetic‐sheet solid‐phase extraction based on a magnetic three‐dimensional graphene sorbent was developed for the extraction of aflatoxins prior to high‐performance liquid chromatography with fluorescence detection. The use of a perforated magnetic‐sheet for fixing the magnetic nanoparticles is a new feature of the method. Hence, the adsorbent particles can be separated from sample solution without using an external magnetic field. This made the procedure very simple and easy to operate so that all steps of the extraction process (sample loading, washing, and desorption) were carried out continuously using two lab‐made syringe pumps. The factors affecting the performance of extraction procedure such as the extraction solvent, adsorbent dose, sample loading flow rate, ionic strength, pH, and desorption parameters were investigated and optimized. Under the optimal conditions, the obtained enrichment factors and limits of detection were in the range of 205–236 and 0.09–0.15 μg/kg, respectively. The relative standard deviations were <3.4 and 7.5% for the intraday (= 6) and interday (= 4) precisions, respectively. The developed method was successfully applied to determine aflatoxins B1, B2, G1, and G2 in different soy‐based food samples.  相似文献   

5.
Abstract

The separation of aflatoxin B1, B2, G1 and G2 was compared on six commercial silica gel plates in twelve solvent systems. Two of the solvent systems, chloroform: acetone: ammonium hydroxide (90: 10: 0.25) and chloroform: acetone: hexane (85: 15: 20) resolved the four aflatoxins on all the tested plates. The solvent modifier played an important role in the resolution of these compounds. The effect of the hardness of the plate is also discussed.  相似文献   

6.
We have developed a simple and fast immunochromatographic test strip for the simultaneous quantitation of aflatoxin B1 and aflatoxin B2 in corn and rice. The strip contains three pads (sample, conjugate, and absorbing pad) and uses the respective polyclonal antibodies immobilized on gold nanoparticles. Matrix interferences were minimized by application of fugacity theory. Clean-up of samples and pre-treatment of strip pads is not required. The visual detection limit is 0.1 ng mL?1, and the process can be completed within 5 min. Out of 113 natural samples, 16 rice and 27 corn samples (38% in total) were aflatoxin positive and the test results were confirmed by HPLC. The strip shows, however, high cross reactivity to aflatoxins G1, G2, and M1. We consider this strip to possess wide applicability because of its ease of use, sensitivity, stability, and low cost.
Graphical Abstract
Grain fungal infection often leads to aflatoxin production. A simple sensitive colloidal gold immunochromatographic strip for visual detection of aflatoxins B1 and B2 in corn and rice with detection limit of 0.1 ng mL-1 within 5 min was developed  相似文献   

7.
The specificity of radioimmunoassay of aflatoxin B1 was tested. Relative cross-reactivity of used antiserum with aflatoxins B1, B2, G1, G2 and M1 was found to be 100%, 24%, 44.2%, 10.3%, and 1.4%, respectively. The interference of coumarin, albumins, steroids and ethylvanilin was estimated also in radioimmunoassay of aflatoxin B1. Thus these compounds may cause a false positive finding of aflatoxin B1.  相似文献   

8.
An ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for simultaneous determination of aflatoxins B1, B2, G1, G2, M1 and M2 in traditional Chinese medicines (TCMs) was developed. The approach was characterized in details and a special focus was placed on the recovery rates of isolation procedure in different TCM matrices, i.e. rhizomes and roots, seeds, flowers, grasses and leaves. For this purpose, [13C17]-aflatoxinB1 was employed as the internal standard and a reliable solid phase extraction-based clean-up method was developed. The observed recovery rates of the six aflatoxins ranged from 85.6% to 117.6% in different matrices. Then, the established method was successfully applied to the determination of the six aflatoxins in various TCMs. For 30 commercial samples analyzed, 16 were contaminated with aflatoxins. The mean levels (incidence) of aflatoxins B1, B2, G1 and G2 in positive samples were 1.40 (68.8%), 1.27 (50.0%), 0.50 (43.8%) and 0.94 (43.8%) μg kg−1, respectively. Interestingly, aflatoxin M1 was detected in two samples with the maximal content of 0.70 μg kg−1. No sample was contaminated with aflatoxin M2. Meanwhile, a possible association between the contamination levels and the selected herbs was clarified in the present study.  相似文献   

9.
A novel, simple, and rapid method is presented for the analysis of aflatoxin B1, aflatoxin B2, and ochratoxin A in rice samples by dispersive liquid–liquid microextraction combined with LC and fluorescence detection. After extraction of the rice samples with a mixture of acetonitrile/water/acetic acid, mycotoxins were rapidly partitioned into a small volume of organic solvent (chloroform) by dispersive liquid–liquid microextraction. The three mycotoxins were simultaneously determined by LC with fluorescence detection after precolumn derivatization for aflatoxin B1 and B2. Parameters affecting both extraction and dispersive liquid–liquid microextraction procedures, including the extraction solvent, the type and volume of extractant, the volume of dispersive solvent, the addition of salt, the pH and the extraction time, were optimized. The optimized protocol provided an enrichment factor of approximately 1.25 and with detection of limits (0.06–0.5 μg/kg) below the maximum levels imposed by current regulations for aflatoxins and ochratoxin A. The mean recovery of three mycotoxins ranged from 82.9–112%, with a RSD less than 7.9% in all cases. The method was successfully applied to measure mycotoxins in commercial rice samples collected from local supermarkets in China.  相似文献   

10.
《Analytical letters》2012,45(9):1485-1499
A fast and reliable ultra-high performance liquid chromatography–tandem mass spectrometry method was developed for the determination of aflatoxins B1, B2, G1, and G2 in cereal. The analytes were extracted by accelerated solvent extraction with methanol/water (80:20). A polymeric solid-phase extraction column was used for sample preparation. Under optimum conditions, the analyte recoveries for samples spiked at different concentration levels in rice and maize ranged from 71.2 to 94.0%, with relative standard deviations less than 16.4%. Limits of detection (signal-to-noise ratio, 3:1) for the aflatoxins ranged from 0.25 to 0.93 ng/g. The developed method was applied to the determination of aflatoxins in ten rice and maize samples. One maize sample tested positive with an aflatoxin B1 concentration of 2.7 ng/g.  相似文献   

11.
In this research, magnetic graphene nanoparticles were prepared and used as adsorbents for preconcentrating the aflatoxins in rice, wheat, and sesame samples. For this purpose, graphene was synthesized by Hummer's method. Magnetically modified graphene formed by the deposition of magnetite (Fe3O4) on graphene was used for the separation of aflatoxins B1, B2, G1, and G2 from the samples. The extractants were subsequently analyzed with high‐performance liquid chromatography and fluorescence detection. Parameters affecting the efficiency of the method were thoroughly investigated. The measurements were done under the optimized conditions. For aflatoxins B1, B2, G1, and G2, limits of detection were 0.025, 0.05, 0.05, and 0.075 ng/g and limits of quantification were 0.083, 0.16, 0.16, and 0.23 ng/g, respectively. Accuracy was examined by the determination of the relative recovery of the aflatoxins. The relative recovery of aflatoxins B1, B2, G1, and G2 were quite satisfactory (between 64.38 and 122.21% for food samples). Relative standard deviations for within laboratory repeatability (n = 6) were in the range from 1.3 to 3.2. The application of this sorbent for the separation and concentration of the mentioned aflatoxins from food samples was examined.  相似文献   

12.
Aflatoxin contamination in agricultural products poses a great threat to humans and livestock. The aim of this study was to establish a simple, rapid, highly sensitive, and inexpensive method for the simultaneous detection of aflatoxin B1, B2, G1, and G2 in agricultural products. We used a vortex assisted low density solvent–microextraction (VALDS‐ME) technique for sample preconcentration and sample detection was achieved with a CE‐LIF method. Aflatoxins were separated in an uncoated fused‐silica capillary with the MEKC mode and were excited by a 355 nm UV laser to produce native fluorescence for detection. The obtained LOD and LOQ for the four aflatoxins were in the range of 0.002–0.075 and 0.007–0.300 μg/L, respectively, and the analysis time was within 6.5 min. Using the established method, aflatoxins were screened in naturally contaminated dairy cattle feed samples including alfalfa, bran, and corn kernel. The result shows that the alfalfa and bran samples were contaminated with aflatoxins to varying degrees. Compared with other analytical techniques for aflatoxin screening in agricultural products, this CE‐LIF method combined with VALDS‐ME preconcentration technique is simple, rapid, highly efficient, and inexpensive.  相似文献   

13.
Monoclonal antibodies (McAbs) cross-reactive with four major aflatoxins were achieved using a modified two-step screening procedure. The first step was twice modified indirect enzyme-linked immunosorbent assay (ELISA) and resulted in positive hybridomas and hapten-specific antibodies. The modified indirect competitive ELISA (ciELISA) was the second step, in which the competition incubation time was decreased to 30 min, aflatoxin B1, B2, G1 and G2 were all used as competitors, the concentrations of four aflatoxins were gradiently decreased in each screening. 2-3 subclonings were performed after every modified fusion and resulted in eight hybridomas that secreted antibodies with good cross-reactivity and high affinity to four aflatoxins. Five McAbs were chosen for further analysis. Of the five, two antibodies had similar reaction efficiency with aflatoxin B1, B2 and G1 but showed a weak cross-reaction to G2. Another two had almost identical reaction capability with four aflatoxins. One clone 1C11 exhibited the highest sensitivity for all four aflatoxins. The concentrations of aflatoxin B1, B2, G1 and G2 at 50% inhibition for 1C11 were 1.2, 1.3, 2.2 and 18.0 pg mL−1 respectively. This is the most sensitive for all four major aflatoxins described so far. The results indicated that the modified two-step screening procedure had superiority and these antibodies could be used for simultaneous analysis of total aflatoxins.  相似文献   

14.
In the present study a method for the simultaneous determination of aflatoxins B2 and G2 in peanuts has been developed. The method uses second order standard addition method and excitation–emission fluorescence data together with parallel factor analysis (PARAFAC). The aflatoxin analysis was based on extraction with methanol–water and carried out using immunoaffinity clean-up. The results of PARAFAC on a set of spiked and naturally contaminated peanuts indicated that the two aflatoxins could be successfully determined. The method was validated and analytical figures of merit were obtained for both analytes. The limits of detection (LOD) were 0.05 and 0.04 μg kg−1 for aflatoxins B2 and G2, respectively. The limits of quantification (LOQ) were 0.16 and 0.12 μg kg−1 for aflatoxins B2 and G2, respectively. Coupling of spectrofluorimetry with PARAFAC can be considered as an alternative method for quantification of aflatoxins in the presence of unknown interferences obtained through analysis of highly complex matrix of peanuts samples at a reduced cost per analysis.  相似文献   

15.
Semen Sojae Preparatum (SSP) is one of the most widely used traditional Chinese medicines, and is also a functional food. However, contamination with aflatoxins may occur in the fermentation process. To evaluate its safety, an accurate and rapid LC–ESI–MS/MS analytical method was developed and validated for the simultaneous determination of AFB1, AFB2, AFG1, AFG2 and AFM1 in SSP. After a simple ultrasonic extraction of SSP samples, chromatographic separation was achieved on an Agilent Zorbax SB‐C18 column (2.1 × 50 mm, 3.5 μm) with a flow rate of 0.50 mL/min. The gradient elution program was performed using a mobile phase consisting of water and acetonitrile, both containing 0.1% formic acid. Detection of five aflatoxins was based on triple quadrupole mass spectrometry using a multiple reaction monitoring mode with an electrospray ionization source. SSP is likely to be contaminated by aflatoxins in the processes of fermentation, storage, transportation and usage, and it is necessary to strictly monitor it. Artemisia annua L. and Morus alba L. may inhibit the production and growth of AFB1‐ and AFB2‐producing fungi, which has a certain detoxification effect on contamination with aflatoxins in SSP.  相似文献   

16.
A multi‐mycotoxin method was developed for the simultaneous determination of trichothecenes (nivalenol, deoxynivalenol, 3‐acetyldeoxynivalenol, 15‐acetyldeoxynivalenol, neosolaniol, fusarenon‐X, diacetoxyscirpenol, HT‐2 toxin, T‐2 toxin), aflatoxins (aflatoxin‐B1, aflatoxin‐B2, aflatoxin‐G1 and aflatoxin‐G2), Alternaria toxins (alternariol, alternariol methyl ether and altenuene), fumonisins (fumonisin‐B1, fumonisin‐B2 and fumonisin‐B3), ochratoxin A, zearalenone, beauvericin and sterigmatocystin in sweet pepper. Sweet pepper was extracted with ethyl acetate/formic acid (99:1, v/v). After splitting up the extract, two‐thirds of the extract was cleaned up using an aminopropyl column followed by an octadecyl column. The remaining part was cleaned up using a strong anion‐exchange column. After recombination of both cleaned parts of the sample extract, the combined solvents were evaporated and the residue was dissolved in mobile phase; 20 µL was injected into the chromatographic system, so only one run was used to separate and detect the mycotoxins in positive electrospray ionization using selected reaction monitoring. The samples were analyzed with a Micromass Quattro Micro triple quadrupole mass spectrometer (Waters, Milford, MA, USA). The mobile phase consisted of variable mixtures of water and methanol, 1% acetic acid and 5 mM ammonium acetate. The limits of detection of the multi‐mycotoxin method varied from 0.32 µg.kg?1 to 42.48 µg.kg?1. The multi‐mycotoxin liquid chromatography/tandem mass spectrometry (LC/MS/MS) method fulfilled the method performance criteria required by the Commission Regulation (EC) No 401/2006. Sweet peppers inoculated by Fusarium species were analyzed using the developed method. Beauvericin (9–484 µg.kg?1) and fumonisins (fumonisin‐B1 up to 4330 µg.kg?1, fumonisin‐B2 up to 4900 µg.kg?1, and fumonisin‐B3 up to 299 µg.kg?1) were detected. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
Determination of aflatoxin B1 and total aflatoxin (B1 + B2 + G1 + G2) in red paprika powder is described using column chromatographic sample clean-up, overpressured layer chromatography (OPLC) separation and fluorescence densitometric evaluation. Two OPLC methods were developed for separation of the four aflatoxins. The detection limit and quantification limit of aflatoxins in red paprika were 0.5 and 1 μg/kg in both methods, respectively. Recovery experiment was carried out with sample containing 1.74 μg/kg aflatoxin B1 and 3.56 μg/kg total aflatoxins measured by European standard HPLC method. Mean recovery amounted to 78.5% (SD 16.1%, n = 5) for aflatoxin B1 and 81.8% (SD 17.1%, n = 5) for total aflatoxins in the case of method 1. It was 105.3% (SD 10.7%, n = 5) for aflatoxin B1 and 97.4% (SD 18.6%, n = 5) for total aflatoxins using the method 2. Despite of that the Hungarian climate is not proper for the toxin production of moulds high aflatoxin B1 contaminated red paprika purchased from the market was found, which may originate from mixing of imported paprika containing very high level toxin with Hungarian one.  相似文献   

18.
Zusammenfassung Ausgehend von reinen Aflatoxin-Standardlösungen werden die Optimierung des dünnschicht-chromatographischen Trennschrittes sowie die Fluorescenzstabilisierung durch spezielle postchromatographische Behandlung der HPTLC-Platten beschrieben. Die quantitative Bestimmung der Aflatoxine B1; B2, G1 und G2 in biologischer Matrix (Eurotium-repens-Pilznährlösungen) mittels der quantitativen HPTLC ist jedoch nur nach vorheriger Extraktion möglich. Die Fertigsäulenextraktion wird hinsichtlich Präzision und Richtigkeit mit der klassischen Flüssig/Flüssig-Extraktion im Scheidetrichter verglichen. Systematische Untersuchungen wäßriger Eichlösungen und aufgestockter Nährbodenlösungen zeigen die hohe Wiederfindungsrate und ausgezeichnete Präzision des Fertigsäulen-Extraktionsverfahrens. Aufstockexperimente von Pilznährlösungen (Eurotium repens) ergeben Wiederfindungsraten zwischen 96% und 101%. Die hier vorgestellten Ergebnisse zeigen, daß dieses quantitative HPTLC-Verfahren für die Routinebestimmung der Aflatoxine gut geeignet ist.
Pre-packed-column extraction and quantative HPTLC-determinationof the aflatoxins B1, B2, G1 and G2 in fungal suspensions
Summary The method for the quantitative determination of aflatoxin in fungal suspensions and in stock solutions was improved. The thin-layer chromatographic separation was optimized and the fluorescence intensity was stabilized and enhanced by a special post-chromatographic treatment of the HPTLC-plates.The quantitative determination of aflatoxin B1; B2, G1 and G2 in biological matrix (Eurotium repens) has been proved to be only possible after previous extraction. The pre-packed column extraction is compared with the classic liquid/liquid extraction with regard to precision and accuracy.Systematic investigations of aqueous standard and mold medium reveal high recovery rates and excellent accuracy of the pre-packed column extraction method. Recovery rates from 96% to 101% were obtained for experiments with standard-addition to fungal suspensions.The presented results indicate that the quantitative HPTLC-procedure is appropriate for routine analysis of aflatoxins.


Diese Arbeit ist Teil der Dissertation von Frau G. Chalela im Fachbereich 15 (Institut für Pflanzenökologie) der Justus-Liebig-Universität Gießen

Diese Arbeit wurde mit freundlicher Unterstützung der Firmen E. Merck (Darmstadt) und Camag (Muttenz, Schweiz) durchgeführt.  相似文献   

19.
An easy method for the determination of aflatoxins B1, G1, B2 and G2 in Rhammus purshiana by LC coupled to mass spectrometry has been developed. Aflatoxins were extracted with a mixture of methanol and water and then it was purified by solid-phase clean-up using a polymeric sorbent, not described previously, for the determination of these toxins. The eluted extract was injected into the chromatographic system using a reversed-phase C18 short column with an isocratic mobile phase composed of methanol-water (30:70). A single-quadruple mass spectrometry using an electrospray ionization source operating in the positive ion mode was used to detect aflatoxins due to derivatization presenting several disadvantages. Recoveries of the full analytical procedure were 110% for aflatoxin B1, 89% for aflatoxin B2, 81% for aflatoxin G1 and 77% for aflatoxin G2. Detection limit (S/N = 3) was 10 ng and quantification limit (S/N = 10) was 25 ng, calculated as amount in medicinal herb.  相似文献   

20.
Rapid, economic, and highly effective determination of multiple mycotoxins in complex matrices has given huge challenges for the analytical method. In this study, an economic analytical strategy based on sensitive and rapid ultrafast liquid chromatography coupled to hybrid triple quadrupole/linear ion trap mass spectrometry technique was developed for the determination of seven mycotoxins of different chemical classes (aflatoxin B1, B2, G1, and G2, ochratoxin A, T‐2 toxin, and HT‐2 toxin) in Polygonum multiflorum. Target mycotoxins were completely extracted using a modified quick, easy, cheap effective, rugged, and safe method without additional clean‐up steps. The types of extraction solvents and adsorbents for the extraction procedure were optimized to achieve high recoveries and reduce coextractives in the final extracts. Due to significant matrix effects for all analytes (≤68.9% and ≥110.0%), matrix‐matched calibration curves were introduced for reliable quantification, exploring excellent linearity for the seven mycotoxins with coefficients of determination >0.9992. The method allowed high sensitivity with limit of detection in the range of 0.031–2.5 μg/kg and limit of quantitation in the range of 0.078–6.25 μg/kg, as well as satisfactory precision with relative standard deviations lower than 8%. Recovery rates were between 74.3 and 119.8% with relative standard deviations below 7.43%. The proposed method was successfully applied for 24 batches of P. multiflorum samples, and six samples were found to be positive with aflatoxin B1, B2, G1, or ochratoxin A. The method with significant advantages, including minimum analytical time, low time and solvent consumption, and high sensitivity, would be a preferred candidate for economic analysis of multiclass mycotoxins in complex matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号