首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microextraction by packed sorbent (MEPS) is a new format for solid-phase extraction (SPE) that has been miniaturized to work with sample volumes as small as 10 μL. The commercially available presentation of MEPS uses the same sorbents as conventional SPE columns and so is suitable for use with most existing methods by scaling the reagent and sample volumes. Unlike conventional SPE columns, the MEPS sorbent bed is integrated into a liquid handling syringe that allows for low void volume sample manipulations either manually or in combination with laboratory robotics. The key aspect of MEPS is that the solvent volume used for the elution of the analytes is of a suitable order of magnitude to be injected directly into GC or LC systems. This new technique is very promising because it is fast, simple and it requires very small volume of samples to produce comparable results to conventional SPE technique. Furthermore, this technique can be easily interfaced to LC/MS and GC/MS to provide a completely automated MEPS/LC/MS or MEPS/GC/MS system. This extraction technique (MEPS) could be of interest in clinical, forensic toxicology and environmental analysis areas. This review provides a short overview of recent applications of MEPS in clinical and pre-clinical studies for quantification of drugs and metabolites in blood, plasma and urine. The extraction of anti-cancer drugs, β-blockers drugs, local anaesthetics, neurotransmitters and antibiotics from biological samples using MEPS technique will be illustrated.  相似文献   

2.
Microextraction by packed sorbent (MEPS) is a new technique for sample preparation that can be connected on-line with LC or GC. In MEPS, approximately 1-2 mg of the solid packing material is inserted into a syringe (100-250 μL) as a plug. Sample preparation takes place on the packed bed. The bed can be packed or coated to provide selective and suitable sampling conditions. The new method is very promising for extraction of drugs and metabolites from biological samples.In this paper, some factors affecting the performance of MEPS such as recovery, carry-over, leakage, washing volume and elution volume were studied using C18 and hydroxylated polystyrene-divinylbenzene copolymer (ENV+) as sorbents. Radioactively labelled bupivacaine in plasma samples was used as test analyte. For the extraction of this drug, using methanol/water 95:5 (v/v) (0.25% ammonium hydroxide) was used as elution solvent. The analyte response increased with increasing the elution volume and it was linear upp up to 100 μL utilizing liquid scintillation counter. Further, for concentrating the sample, we found that MEPS may be used such that the sample can be drawn through the needle, up and down, several times. The analyte leakage increases as the volume washing increases, though higher washing volumes may also result in cleaner extracts. To eliminate analyte carry-over, the sorbents were washed first with 3 × 250 μL elution solution and then with 3 × 250 μL washing solution. In addition, the reproducibility measurements show relatively good relative standard deviation (RSD) % values concerning analyte recovery and analyte leakage. The present study provides an understanding of basic aspects when optimizing methods for MEPS. In this study, MEPS was used off-line with liquid scintillation counter and on-line with LC-MS/MS.  相似文献   

3.
SPE joined with dispersive liquid–liquid microextraction based on solidification of floating organic drop (DLLME‐SFO) as a novel technique combined with GC with electron‐capture detection has been developed as a preconcentration technique for the determination of organochlorine pesticides (OCPs) in water samples. Aqueous samples were loaded onto multiwalled carbon nanotubes as sorbent. After the elution of the desired compounds from the sorbent by using acetone, the DLLME‐SFO technique was performed on the obtained solution. Variables affecting the performance of both steps such as sample solution flow rate, breakthrough volume, type and volume of the elution, type and volume of extraction solvent and salt addition were studied and optimized. The new method provided an ultra enrichment factor (8280–28221) for nine OCPs. The calibration curves were linear in the range of 0.5–1000 ng/L, and the LODs ranged from 0.1–0.39 ng/L. The RSD, for 0.01 μg/L of OCPs, was in the range of 1.39–13.50% (n = 7). The recoveries of method in water samples were 70–113%.  相似文献   

4.
A simple, rapid, sensitive, and non-consuming solvent method for the determination of cotinine in urine was developed, based on sample preparation by the relatively new technique microextraction in packed sorbent (MEPS) and analysis by GC–MS. This optimized method was compared with conventional solid-phase extraction/liquid–liquid extraction method used as reference. The wide linear range (5–5,000 ng/mL) and high sensitivity of the MEPS method (limit of detection 0.8 ng/mL) allow application to analysis of urine from smokers as well as non-smokers susceptible to passive smoking.  相似文献   

5.
A liquid chromatographic–electrospray ionization–time‐of‐flight/mass spectrometric (LC‐ESI‐TOF/MS) method was developed and applied for the determination of WKYMVm peptide in rat plasma to support preclinical pharmacokinetics studies. The method consisted of micro‐elution solid‐phase extraction (SPE) for sample preparation and LC‐ESI‐TOF/MS in the positive ion mode for analysis. Phenanthroline (10 mg/mL) was added to rat blood immediately for plasma preparation followed by addition of trace amount of 2 m hydrogen chloride to plasma before SPE for stability of WKYMVm peptide. Then sample preparation using micro‐elution SPE was performed with verapamil as an internal standard. A quadratic regression (weighted 1/concentration2), with the equation y = ax2 + bx + c was used to fit calibration curves over the concentration range of 3.02–2200 ng/mL for WKYMVm peptide. The quantification run met the acceptance criteria of ±25% accuracy and precision values. For quality control samples at 15, 165 and 1820 ng/mL from the quantification experiment, the within‐run and the between‐run accuracy ranged from 92.5 to 123.4% with precision values ≤15.1% for WKYMVm peptide from the nominal values. This novel LC‐ESI‐TOF/MS method was successfully applied to evaluate the pharmacokinetics of WKYMVm peptide in rat plasma.  相似文献   

6.
This study introduces a novel extraction technique in the nanoscale and challenges the limits of solvent extraction in the GC/MS using electronic ionization (EI) method for quantitative determination of six methoxyacetophenone (MAP) and anisaldehye (AAH) isomers in one drop of water and urine. This technique is termed as dynamic liquid phase nanoextraction (DLPNE). The optimum parameters for the DLPNE technique were: selection of solvent, toluene; sampling volume, 0.44 microL; dwell time, 2 s; number of sampling, 15; extraction time, 1.5 min; volume of extraction solvent, 60 nL; and no salt addition. The LODs for this technique were 5-20 ng/mL. The RSDs were in the range of 9.7-12.6% (n = 6). The linear dynamic range of the calibration curve of DLPNE is from 0.02 to 0.5 microg/mL with correlation coefficient (r(2)) >0.9705. The advantages of the DLPNE technique are rapidity, ease of operation, simple device, and extremely little solvent and sample consumption. This technique was also compared with the static liquid phase nanoextraction (SLPNE) while the SLPNE failed to detect any signal for the six isomers. We believe that this technique can be very useful for the detection of volatile organic compounds in environmental science from microscale of water or it can be applied to clinical or pharmaceutical application such as diagnosis of microamount of urine or blood samples by GC/MS.  相似文献   

7.
A sensitive and reliable ultra‐high‐performance liquid chromatography–electrospray ionization–tandem mass spectrometry (UHPLC‐MS/MS) method was developed and validated for the simultaneous determination of four active components of Semen Cassiae extract (aurantio‐obtusin, chrysoobtusin, obtusin and 1‐desmethylobtusin) in rat plasma after oral administration. Chromatographic separation was achieved on an Agilent Poroshell 120 C18 column with gradient elution using a mobile phase that consisted of acetonitrile‐ammonium acetate in water (30 mm ) at a flow rate of 0.4 mL/min. Detection was performed by a triple‐quadrupole tandem mass spectrometer in multiple reaction monitoring mode. The calibration curve was linear over a range of 3.24–1296 ng/mL for aurantio‐obtusin, 0.77–618 ng/mL for chrysoobtusin, 34.55–1818 ng/mL for obtusin and 1.86–1485 ng/mL for 1‐desmethylobtusin. Inter‐ and intra‐day assay variation was <15%. All analytes were shown to be stable during all sample storage and analysis procedures. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

8.
A headspace solid-phase microextraction (HS-SPME) method using polydimethylsiloxane (PDMS)-coated fiber coupling with GC/self-ion molecule reaction (SIMR)/MS/MS (GC/SIMR/MS/MS) has been developed for the differentiation of o-, m-, and p-xylene isomers. The optimization parameters of this method are: extraction time 20 min, stirring rate 1200 rpm, sampling temperature 28 degrees C, and salt concentration 5%. The LODs were found to be in the range of 3-9 ng/mL under the SIM mode of GC/MS. The RSDs were below 1% (n=5). The linear dynamic range of the calibration curve was from 0.05 to 10.0 microg/mL with correlation coefficient (r2)>0.9089. The advantages of this technique are sensitive, selective, ease of operation, simple device, solvent free, and extremely little sample consumption. This technique is the first example using SIMR combined MS/MS applied in the GC/MS and it can be applied to other volatile compounds for future application.  相似文献   

9.
Microextraction by packed sorbent (MEPS) is a miniaturized, solid‐phase extraction (SPE) technique that works online with gas chromatography (GC) and liquid chromatography (LC). Not only is the automation process with MEPS advantageous, but the much smaller volumes of the samples, solvents and dead space in the system also provide other significant advantages such as the speed and the simplicity of the sample preparation process. In this study MEPS has been evaluated for quantification of sensory neuron‐specific receptors agonist (BAM8‐22). Owing to the instability of BAMs, the focus was on fast extraction and determination of the peptide online using LC‐MS/MS. Sorbents such as C2, C8 and ENV+ (hydroxylated polystyrene–divinylbenzene copolymer) were investigated in the present study. MEPS‐C8 gave the best results compared with C2 and ENV and it was used for the method validation. The calibration curve was obtained within the concentration range of 20.0–3045 nmol/L in plasma. The regression correlation coefficients for plasma samples were ≥0.99 for all runs (n = 6). The between‐batch accuracy and precision for BAM8‐22 ranged from ?13 to ?2.0% and from 4.0 to 14%, respectively. Additionally, the accuracy and precision for BAM22‐8 ranged from ?13 to 7.0% and from 3.0 to 12%, respectively. The present method was used for pharmacokinetic studies for BAMs in plasma samples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
《Analytical letters》2012,45(15):2311-2317
The present work describes the methodology and validation of gas chromatography with flame ionization (FID) and mass spectrometric (MS) detection after derivatization with N-Methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) for determination of atenolol with an internal standard (metoprolol) in pharmaceutical preparations. The linearity was established over the concentration range of 0.5–20 μg/mL for GC/FID and 12.5–500 ng/mL for GC/MS method. The intra- and inter-day relative standard deviation was less than 4.72 and 5.80%, respectively. Limit of quantification was determined as 500 ng/mL and 12.5 ng/mL for GC/FID and GC/MS, respectively. No interference was found from tablet excipients at the selected assay conditions. Developed GC/FID and GC/MS methods in this study are accurate, sensitive, and precise and can be easily applied to Tensinor tablet as pharmaceutical preparation.  相似文献   

11.
Reliable methods for the determination of tryptophan and its metabolites are vital to the monitoring of biochemical states during the initiation and progression of cardiovascular disease. In the present study, a single‐run liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed for the simultaneous determination of tryptophan (Trp) and its metabolites, including kynurenine (Kyn), kynurenic acid (KA), xanthurenic acid (XA) and 5‐hydroxytryptamine (5‐HT), in human plasma. The plasma samples were prepared using a protein precipitation approach, and the chromatographic separation was performed by gradient elution on a C18 column within a total analysis time of 3.5 min. The calibration ranges were 40–20,000 ng/mL for Trp, 4–2000 ng/mL for Kyn, 0.2–100 ng/mL for KA, 0.4–200 ng/mL for XA and 1–500 ng/mL for 5‐HT, and the precision and accuracy were acceptable. The evaluation of recovery and internal standard‐normalized matrix effect proved that the sample preparation approach was effective and the matrix effect could be negligible. The newly developed method was successfully applied to the analysis of plasma samples from healthy individuals and myocardial infarction patients. The findings suggested that the plasma concentrations of Trp, Kyn, 5‐HT as well as the concentration ratios of Kyn/Trp and Trp/5‐HT might serve as biomarkers for the monitoring of acute myocardial infarction.  相似文献   

12.
A fully automated protocol consisting of microextraction by packed sorbents (MEPS) coupled with large volume injection-in-port-derivatization-gas chromatography–mass spectrometry (LVI-derivatization-GC–MS) was developed to determine endocrine disrupting compounds (EDCs) such as alkylphenols, bisphenol A, and natural and synthetic hormons in river and waste water samples. During method optimization, the extraction parameters as ion strength of the water sample, the MEPS extraction regime, the volume of organic solvent used for the elution/injection step, the type of elution solvents and the selectivity of the sorbents were studied. For optimum in-port-derivatization, 10 μL of the derivatization reagent N,O-bis(trimethylsilyl)triufloroacetamide with 1% of trimethylchlorosilane (BSTFA + 1% TMCS) was used. 17β-Estradiol-molecularly imprinted polymer (MIP) and silica gel (modified with C-18) sorbents were examined for the enrichment of the target analytes from water samples and the obtained results revealed the high selectivity of the MIP material for extraction of substances with estrogen-like structures. Recovery values for most of the analytes ranged from 75 to 109% for the C18 sorbent and from 81 to 103% for the MIP material except for equilin (on C18 with only 57–66% recovery). Precision (n = 4) of the entire analysis protocol ranged between 4% and 22% with both sorbents. Limits of detection (LODs) were at the low ng L−1 level (0.02–87, C18 and 1.3–22, MIP) for the target analytes.  相似文献   

13.
The present work describes the development and validation of a method for the determination of five non-steroidal anti-inflammatory drugs (NSAIDs: clofibric acid, ibuprofen, naproxen, diclofenac and ketoprofen) in water samples. The fully automated method includes in situ aqueous derivatization followed by analyte enrichment by microextraction by packed sorbent (MEPS) coupled directly to programmed temperature vaporizer-gas chromatography-mass spectrometry (PTV-GC-MS). The MEPS variables, such as sample volume, elution solvent, elution volume, fill and injection speed and washing steps were optimized. It was possible to use the MEPS polymer (silica-C18) 250 times. Ibuprofen-d3 was used as internal standard. The reproducibility of the method, calculated as the relative standard deviation (RSD), was below 10% for all compounds. Detection limits in ultrapure water were between 3.0 and 110 ngL(-1) for ibuprofen and ketoprofen, respectively. External calibration was used in the determination of NSAIDs in several types of water samples, including tap, river, sea and influent and effluent wastewater. The results obtained revealed the presence of ibuprofen and naproxen in the influent wastewater sample and of naproxen in the effluent wastewater sample.  相似文献   

14.
The goal of this work was to develop and validate an analytical method for the detection and quantification of the biogenic amines serotonin (5‐HT), dopamine (DA) and norepinephrine (NE), using microextraction in packed syringe (MEPS) and liquid chromatography coupled to electrochemical detection (HPLC‐ED) in urine. The method was validated according to internationally accepted guidelines from the Food and Drug Administration. Linearity was established between 50 and 1000 ng/mL for 5‐HT and between 5 and 1000 ng/mL for DA and NE, with determination coefficients (R2) >0.99 for all compounds. The limits of quantification and detection were respectively 50 and 20 ng/mL for 5‐HT, and 5 and 2 ng/mL for DA and NE. Within‐ and between‐run precision ranged from 0.84 to 9.41%, while accuracy ranged from 0.79 to 12.76% for all compounds. The intermediate precision and accuracy were 1.50–8.36 and 0.54–13.51%, respectively. The method was found suitable for clinical routine analysis of the studied compounds, using a sample volume of 0.5 mL. This is the first study employing a commercially available MEPS column for the simultaneous detection and quantification of 5‐HT, DA and NE in urine by coulometric detection. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

15.

A recently developed hydrodistillation–solvent microextraction (HD–SME) method coupled to gas chromatography–mass spectrometry (GC–MS) was applied to the analysis of volatile components of aerial parts of Echinophora cinerea (Boiss). By the use of a simplex optimization method, the effects of extraction time, sample weight and microdrop volume on the extraction efficiency of the method were optimized. In the optimized conditions, 3 µL of n-heptadecane was suspended in the headspace of 6 g of hydrodistillating sample, using a microsyringe. After 7 min, the solvent was retracted back into the syringe and directly injected into the GC–MS injection port. The HD–SME method was compared to a conventional hydrodistillation technique. In general, the extraction with HD–SME was relatively faster and required smaller amounts of sample. The microextraction method also showed some selectivity towards α-phellandrene and Z-β-ocimene monoterpenes. A precision better than 6.5% (expressed as relative standard deviation) was obtained for the method.

  相似文献   

16.
A method for the simultaneous determination of the antiepileptic drugs, phenobarbital (PHB), phenytoin (PTN), carbamazepine (CBZ), primidone (PRM) and oxcarbazepine (OXC) in human plasma and urine samples by using micro‐extraction in a packed syringe as the sample preparation method connected with LC/UV (MEPS/LC/UV) is described. Micro‐extraction in a packed syringe (MEPS) is a new miniaturized, solid‐phase extraction technique that can be connected online to gas or liquid chromatography without any modifications. In MEPS approximately 1 mg of the solid packing material is inserted into a syringe (100–250 μL) as a plug. Sample preparation takes place on the packed bed. The bed can be coated to provide selective and suitable sampling conditions. The new method is very promising, easy to use, fully automated, inexpensive and quick. The standard curves were obtained within the concentration range 1–500 ng/mL in both plasma and urine samples. The results showed high correlation coefficients (R2>0.988) for all of the analytes within the calibration range. The extraction recovery was found to be between 88.56 and 99.38%. The limit of quantification was found to be between 0.132 and 1.956 ng/mL. The precision (RSD) values of quality control samples (QC) had a maximum deviation of 4.9%. A comparison of the detection limits with similar methods indicates high sensitivity of the present method. The method is applied for the analysis of these drugs in real urine and plasma samples of epileptic patients.  相似文献   

17.
A liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI–MS/MS) method was developed and validated to measure GDC-0084 in human plasma and cerebrospinal fluid (CSF). Reverse-phase chromatography with gradient elution was performed using a C18 column (50 × 2.0 mm, 3 μm). Solid-phase extraction of plasma and CSF was employed to give excellent recovery. MS detection was performed with positive ion screening in multiple reaction monitoring mode. The precursor to the product ions (Q1 → Q3) selected for GDC-0084 and GDC-0084-d6 were 383.2 → 353.2 and 389.2 → 353.2, respectively. A separate calibration curve was established for human plasma and CSF. Both calibration curves, ranging from 0.2 to 200 ng/mL, were linear and had acceptable intra- and inter-day precision and accuracy. The lower limit of quantitation and limit of detection for GDC-0084 in human plasma were 0.2 ng/mL (signal/noise ≥47) and 0.005 ng/mL (signal/noise ≥3.5), respectively, and for GDC-0084 in human CSF were 0.2 ng/mL (signal/noise ≥19.7) and 0.04 ng/mL (signal/noise ≥7.2). This method was successfully applied to analyze serial plasma samples obtained from children with diffuse intrinsic pontine gliomas and other midline gliomas who participated in pharmacokinetic studies as part of a phase I clinical trial of GDC-0084.  相似文献   

18.
A new, specific and sensitive GC‐MS method with electron impact ionization technique was developed for quantitative analysis of ezetimibe (EZE) in human plasma. Prior to GC analysis, EZE was derivatized with N‐methyl‐N‐trimethylsilyl‐trifluoroacetamide (MSTFA), which is a trimethyl silylating reagent. The derivatization reaction was optimized and parameters such as catalyst, derivatization time, temperature, solvent and the volume of silylating reagent were investigated. Trimethylsilyl ether derivative of EZE was determined in selected ion monitoring (SIM, mass‐to‐charge ratio (m/z): 326) mode. The method was validated with respect to LOD and LOQ, precision, accuracy, linearity, specificity, stability, and recovery. The LOQ and LOD were found as 15 and 10 ng/mL, respectively. The linearity of the method ranged from 15 to 250 ng/mL. The correlation coefficient of the calibration curve was 0.9977 ± 0.0004 (± S.E.M.). The intra‐ and inter‐day precisions (RSD) were less than 6% and accuracies (bias) for intra‐ and inter‐day accuracy were found between –4.04 and 9.71% at four different concentration levels (15, 40, 100, 250 ng/mL). The proposed method was successfully applied to real human plasma samples for determination of total EZE.  相似文献   

19.
A simple, rapid and sensitive method using UPLC‐MS/MS was established and validated for simultaneous determination of gelsemine and koumine in rat plasma after oral administration of Gelsemium elegans Benth extract. Plasma was performed with methanol precipitation and berberine was chosen as the internal standard. Plasma samples were separated on an Acquity UPLC® BEH C18 column (3.0 × 50 mm, 1.7 μm) with gradient elution using acetonitrile and 0.1% formic acid aqueous solution as the mobile phase at a flow rate of 0.4 mL/min. Multiple reaction monitoring mode in positive ion mode was utilized for detection. The calibration curves were linear over the range of 0.2–100 ng/mL for gelsemine and 0.1–50 ng/mL for koumine, with the lower limits of quantification 0.2 and 0.1 ng/mL, respectively. The intra‐ and inter‐precision and accuracy were well within the acceptable ranges. The developed method was successfully applied to an in vivo pharmacokinetic study in rat after oral administration of 10 mg/kg Gelsemium elegans Benth extract.  相似文献   

20.
A simple and sensitive analytical method for the determination of fluoxetine, estrone and selected pesticides and endocrine disruptors has been proposed for wastewater analysis by gas chromatography–mass spectrometry (GC–MS). A switchable solvent was produced with N,N-dimethylbenzylamine by changing its hydrophobic properties by the addition of CO2 for protonation. Sodium hydroxide was added to switch the solubility of the extraction solvent and to allow phase separation in the sample/standard medium. Analytical parameters affecting the extraction outputs such as volume of switchable solvent, concentration and volume of sodium hydroxide, mixing type and period were investigated to improve the extraction recovery of the selected analytes. Under the optimum conditions, limits of detection and limits of quantification for the analytes were calculated in the ranges of 0.16–8.6?ng mL?1 and 0.54–29?ng mL?1, respectively. The developed method was successfully applied to synthetic wastewater and two municipal wastewater samples. None of the selected analytes were detected in the samples. High recovery values demonstrated that the proposed method was reliable and applicable to complex matrices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号