首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A simple and sensitive liquid chromatography‐tandem mass spectrometry (LC–MS/MS) method has been developed and validated for the quantitation of exemestane (Exe) and its main metabolite 17‐dihydroexemestane (DhExe) in human plasma. The analytes were extracted by protein precipitation with acetonitrile, containing stable 13C‐labelled Exe (13C3‐Exe) as internal standard, and measured by LC–MS/MS. The best chromatographic separationof the analytes from the interferences was achieved by using a Phenyl column operating under isocratic regime conditions. The total chromatographic runtime was 5.0 min and the elution of Exe and DhExe occurred at 2.5 min and 2.9 min, respectively. Quantitation was performed by employing the positive electrospray ionization (ESI) technique and multiple reaction monitoring mode (MRM). The monitored precursor to product‐ion transitions for Exe, DhExe and 13C3‐Exe internal standard were m/z 297.0 → 120.8, m/z 299.1 → 134.9 and m/z 300.0 → 123.2, respectively. The lower limit of quantitation (LLOQ) was 0.1 ng/ml for DhExe and 0.2 ng/ml for Exe. The method was linear up to 36–51 ng/ml with r2 ≥ 0.998. The intra‐ and inter‐assay precision were ≤7.7% and 5.1% for Exe and ≤8.1 and 4.9% for DhExe while deviations from nominal values were in the 1.5–13.2% and ? 9.0–5.8% ranges for Exe and DhExe, respectively. The analytical method resulted robust and suitable for pharmacokinetic monitoring of Exe and its main metabolite during adjuvant therapy in patients with breast cancer. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

2.
The gas‐phase reactions of Aryl―SF5·+ and Aryl―SO2F·+ have been studied with the electron ionization tandem mass spectrometry. Such reactions involve F‐atom migration from the S‐atom to the aryl group affording the product ion Aryl―F·+ by subsequent expulsion of SF4 or SO2, respectively. Especially, the 4‐pentafluorosulfanylphenyl cation 4‐SF5C6H4+ (m/z 203) from 4‐NO2C6H4SF5·+ by loss of ·NO2 could occur multiple F‐atom migration reactions to the product ion C6H4F3+ (m/z 133) by loss of SF2 in the MS/MS process. The gas‐phase reactions of 2,5‐xylylfluoroiodonium (pXyl―I+F, m/z 251) have also been studied using the electrospray tandem mass spectrometry, which involve a similar F‐atom migration process from the I‐atom to the aryl group giving the radical cation of 2‐fluoro‐p‐xylene (or its isomer 4‐fluoro‐m‐xylene, m/z 124) by reductive elimination of an iodine atom. All these gas‐phase F‐atom migration reactions from the heteroatom to the aryl group led to the aryl―F coupling product ions with a new formed CAryl―F bond. Density functional theory calculations were performed to shed light on the mechanisms of these reactions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

3.
Diphenylarsinic acid (DPAA) and phenylarsonic acid (PAA), which were degradation products of organoarsenic chemical warfare agents used as sternutatory gas, were detected in the well water at Kamisu, Ibaraki Prefecture, Japan. The standard material of DPAA was synthesized with aqueous arsenic acid and phenylhydrazine in order to determine organic arsenic compounds in well water. The DPAA showed a protonated ion at m/z 263 [M + H]+ and a loss of H2O ion at m/z 245 [M + H ? H2O]+ from protonated ion by the electrospray ionization time‐of‐flight mass spectrometry. The quantitative analysis of DPAA and PAA was performed by high‐performance liquid chromatography inductively coupled plasma mass spectrometry and the system worked well for limpid liquid samples such as well water. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

4.
In studying the metabolic pathways underlying the mechanism of carcinogenesis of the heterocyclic amine of 2‐amino‐3‐methylimidazo[4,5‐f]quinoline (IQ), we recently found a new metabolite which gave an [M + H]+ ion of m/z 217 when subjected to electrospray ionization (ESI) in positive‐ion mode. Following ip injection of this metabolite of m/z 217 (designated as m/z 217) to beta‐naphthoflavone‐treated mice, 57% of the total radioactivity was recovered in a 24‐h mouse urine sample. HPLC separation followed by MS analysis indicates that the urine sample contained m/z 217 (36 ± 3% of total recovered radioactivity) and two other peaks that gave rise to the [M + H]+ ions of m/z 393 (31 ± 4%, designated as m/z 393) and m/z 233 (14 ± 1%, designated as m/z 233). Beta‐glucuronidase treatment of m/z 393 resulted in a radioactive peak corresponding to m/z 217. ESI in combination with various mass spectrometry techniques, including multiple‐stage mass spectrometry, exact mass measurements and H/D exchange followed by tandem mass spectrometry, was used for structural characterization. The urinary metabolites of m/z 217, 393 and 233 were identified as 1,2‐dihydro‐2‐amino‐5‐hydroxy‐3‐methylimidazo[4,5‐f]quinoline, 1,2‐dihydro‐2‐amino‐5‐O‐glucuronide‐3‐methylimidazo[4,5‐f]quinoline and 1,2‐dihydro‐2‐amino‐5,7‐dihydroxy‐3‐methylimidazo[4,5‐f]quinoline, respectively. Our results demonstrated that m/z 217 is biotransformed in vivo to m/z 393 by O‐glucuronidation and to m/z 233 by oxidation. The observation of these more polar metabolites relative to IQ suggests that they may arise from a previously undescribed detoxicification pathway. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

5.
A simple and high sensitive ultra‐high‐performance liquid chromatography tandem mass spectrometry method for the determination of fludrocortisone in human plasma was developed and validated as per guidelines. The analyte and internal standard (IS), fludrocortisone‐d5, were extracted from human plasma via liquid–liquid extraction using tert‐butyl methyl ether. The chromatographic separation was achieved on a Chromolith RP18e column using a mixture of acetonitrile and 2 mm ammonium formate (70:30, v/v) as the mobile phase at a flow rate of 0.7 mL/min. Quantitation was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique, operating in multiple reaction monitoring and positive ion mode. The precursors to product ion transitions monitored for fludrocortisone and IS were m/z 381.2 → 343.2 and 386.2 → 348.4, respectively. The assay was validated with linear range of 40–3000 pg/mL. The intra‐ and inter‐day precisions (relative standard deviation) were within 0.49–7.13 and 0.83–5.87%, respectively. The proposed method was successfully applied to pharmacokinetic studies in humans. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Phytochelatins (PC) are cystein‐rich oligopeptides in plants for coordination with toxic metals and metalloids via their thiol groups. The composition, structure, and mass spectrometric fragmentation of arseno‐PC (As‐PC) with PC of different degree of oligomerization (PC2–PC5) in solution were studied using liquid chromatography coupled in parallel to inductively coupled plasma mass spectrometry and electrospray ionization quadrupole time‐of‐flight mass spectrometry. As‐PC were detected from As(PC2) to As(PC5) with an increasing number of isomers that differ in the position of thiol groups bound to As. Thermodynamic modeling supported the identification process in case of these isomers. Mass spectrometric fragmentation of the As‐PC does not follow the established pattern of peptides but is governed by the formation of series of As‐containing annular cations, which coordinate to As via S, N, or O. Structure proposals for 30 As‐PC fragment ions in the range m/z 147.92 to m/z 1290.18 are elaborated. Many of these fragment ions are characteristic to several As‐PC and may be suited for a screening for As‐PC in plant extracts. The mass spectrometric data offer the perspective for a future more sensitive determination of As‐PC by means of liquid chromatography tandem mass spectrometry with multiple reaction monitoring. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Collision‐induced dissociation (CID) mass spectra of differently substituted glucosinolates were investigated under negative‐ion mode. Data obtained from several glucosinolates and their isotopologues (34S and 2H) revealed that many peaks observed are independent of the nature of the substituent group. For example, all investigated glucosinolate anions fragment to produce a product ion observed at m/z 195 for the thioglucose anion, which further dissociates via an ion/neutral complex to give two peaks at m/z 75 and 119. The other product ions observed at m/z 80, 96 and 97 are characteristic for the sulfate moiety. The peaks at m/z 259 and 275 have been attributed previously to glucose 1‐sulfate anion and 1‐thioglucose 2‐sulfate anion, respectively. However, based on our tandem mass spectrometric experiments, we propose that the peak at m/z 275 represents the glucose 1‐thiosulfate anion. In addition to the common peaks, the spectrum of phenyl glucosinolate (β‐D ‐Glucopyranose, 1‐thio‐, 1‐[N‐(sulfooxy)benzenecarboximidate] shows a substituent‐group‐specific peak at m/z 152 for C6H5‐C(?NOH)S?, the CID spectrum of which was indistinguishable from that of the anion of synthetic benzothiohydroxamic acid. Similarly, the m/z 201 peak in the spectrum of phenyl glucosinolate was attributed to C6H5‐C(?S)OSO2?. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A novel, sensitive and selective ultra‐high‐performance liquid chromatography–electrospray ionization mass spectrometry method was developed and validated for the quantification of acotiamide (ACT), a first‐in‐class drug used in functional dyspepsia, in rat plasma. A simple protein precipitation method with acetonitrile as precipitating solvent was used to extract ACT from rat plasma. ACT and an internal standard (mirabegron, IS) were separated on an Agilent poroshell EC C18 column (50 × 3.0 mm, 2.7 µm) using methanol–10 mM ammonium acetate binary gradient mobile phase at a flow rate of 0.4 mL/min over 4 min run time. Detection was performed using target ions of [M + H]+ at m/z 451.2010 for ACT and m/z 397.1693 for IS in selective ion mode. The method was validated in the calibration range of 1.31–1000 ng/mL. All the validation parameters were well within the limits. The method demonstrated good performances in terms of intra‐ and inter‐day precision (3.27–12.60% CV) and accuracy (87.96–104.94%). Thus the present ultra‐high‐pressure liquid chromatograhy–high‐resolution mass spectrometry method for determination of ACT in rat plasma, is highly sensitive and rapid with a short run‐time of 4 min, can be suitable for high sample throughput and for large batches of biological samples in pharmacokinetic studies. This method can be extended to measure plasma concentrations of ACT in humans to understand drug metabolism, drug interaction and adverse effects. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A simple, practical, accurate and sensitive liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and fully validated for the quantitation of guanfacine in beagle dog plasma. After protein precipitation by acetonitrile, the analytes were separated on a C18 chromatographic column by methanol and water containing 0.1% (v/v) formic acid with a gradient elution. The subsequent detection utilized a mass spectrometry under positive ion mode with multiple reaction monitoring of guanfacine and enalaprilat (internal standard) at m/z 246.2 → 159.0 and m/z 349.2 → 205.9, respectively. Good linearity was obtained over the concentration range of 0.1–20 ng/mL for guanfacine in dog plasma and the lower limit of quantification of this method was 0.1 ng/mL. The intra‐ and inter‐day precisions were <10.8% relative standard deviation with an accuracy of 92.9–108.4%. The matrix effects ranged from 89.4 to 100.7% and extraction recoveries were >90%. Stability studies showed that both analytes were stable during sample preparation and analysis. The established method was successfully applied to an in vivo pharmacokinetic study in beagle dogs after a single oral dose of 4 mg guanfacine extended‐release tablets. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

10.
A rapid and sensitive bioassay was established and validated to simultaneously determine gemfibrozil, morphine, morphine‐3β‐glucuronide, and morphine‐6β‐glucuronide in mouse cerebrum, epencephalon, and hippocampus based on ultra‐high performance liquid chromatography and tandem mass spectrometry. The deuterated internal standard, M6G‐d3, was mixed with the prepared samples at 10 ng/mL as the final concentration. The samples were transferred into the C18 solid‐phase extraction columns with gradient elution for solid‐phase extraction. The mobile phase consisted of methanol and 0.05% formic acid (pH 3.2). Multiple reaction monitoring has been applied to analyze gemfibrozil (m/z 249.0 → 121.0) in anion mode, and M6G‐d3 (m/z 465.1 → 289.1), morphine (m/z 286.0 → 200.9), and M3G and M6G (m/z 462.1 → 286.1) in the positive ion mode. The method has a linear calibration range from 0.05 to 10 ng for gemfibrozil, morphine, and M3G and M6G with correlation coefficients >0.993. The lower limit of quantitation for all four analytes was 0.05 ng/mL, relative standard deviation of intra‐ and interday precision was less than 10.5%, and the relative error of accuracy was from ?8.2 to 8.3% at low, medium, and high concentrations for all the analytes. In conclusion, gemfibrozil can influence the morphine antinociception after coronary heart disease induced chronic angina by the change in one of morphine metabolites', M3G, distribution in mouse brain.  相似文献   

11.
A specific, sensitive and stable high‐performance liquid chromatographic–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the quantitative determination of methyl 3‐amino‐6‐methoxythieno [2,3‐b]quinoline‐2‐carboxylate (PU‐48), a novel diuretic thienoquinolin urea transporter inhibitor in rat plasma. In this method, the chromatographic separation of PU‐48 was achieved with a reversed‐phase C18 column (100 × 2.1 mm, 3 μm) at 35°C. The mobile phase consisted of acetonitrile and water with 0.05% formic acid added with a gradient elution at flow rate of 0.3 mL/min. Samples were detected with the triple‐quadrupole tandem mass spectrometer with multiple reaction monitoring mode via electrospray ionization source in positive mode. The retention time were 6.2 min for PU‐48 and 7.2 min for megestrol acetate (internal standard, IS). The monitored ion transitions were mass‐to‐charge ratio (m/z) 289.1 → 229.2 for PU‐48 and m/z 385.3 → 267.1 for the internal standard. The calibration curve for PU‐48 was linear over the concentration range of 0.1–1000 ng/mL (r2 > 0.99), and the lower limit of quantitation was 0.1 ng/mL. The precision, accuracy and stability of the method were validated adequately. The developed and validated method was successfully applied to the pharmacokinetic study of PU‐48 in rats.  相似文献   

12.
A rapid, selective and sensitive liquid chromatography–tandem mass spectrometry assay method was developed for simultaneous determination of ambroxol and salbutamol in human plasma using citalopram hydrobromide as internal standard (IS). The sample was alkalinized with ammonia water (33:67, v/v) and extracted by single liquid–liquid extraction with ethyl acetate. Separation was achieved on Waters Acquity UPLC BEH C18 column using a gradient program at a flow rate of 0.2 mL/min. Detection was performed using electrospray ionization in positive ion multiple reaction monitoring mode by monitoring the ion transitions m/z 378.9 → 263.6 (ambroxol), m/z 240.2 → 147.7 (salbutamol) and m/z 325.0 → 261.7 (IS). The total analytical run time was relatively short (3 min). Calibration curves were linear in the concentration range of 0.5–100.0 ng/mL for ambroxol and 0.2–20.0 ng/mL for salbutamol, with intra‐ and inter‐run precision (relative standard deviation) <15% and accuracy (relative error) ranging from 97.7 to 112.1% for ambroxol and from 94.5 to 104.1% for salbutamol. The method was successfully applied in a clinical pharmacokinetic study of the compound ambroxol and salbutamol tablets.  相似文献   

13.
A rapid, selective, and sensitive ultra‐high performance liquid chromatography‐tandem mass spectrometry method was developed for simultaneous determination of ferulic acid, paeoniflorin, and albiflorin, the major active constituents of Danggui‐Shaoyao‐San, in rat plasma using geniposide as the internal standard. The plasma samples were processed by protein precipitation with acetonitrile, and then separated on a Shim‐Pack XR‐ODS C18 column (75 mm × 3.0 mm, 2.2 μm) using gradient elution program with a mobile phase consisting of 0.1% aqueous formic acid and acetonitrile at a flow rate of 0.4 mL/min. The detection was achieved on a 3200 QTRAP mass spectrometer equipped with electrospray ionization source in negative ionization mode. Quantification was performed using multiple reaction monitoring mode by monitoring the fragmentation of m/z 192.9→134.0 for ferulic acid, m/z 525.0→120.9 for paeoniflorin, m/z 525.2→121.0 for albiflorin, and m/z 433.1→225.1 for the internal standard, respectively. The calibration curve was linear in the range of 5–2500 ng/mL for all the three analytes (r ≥ 0.9972) with the lower limit of quantitation of 5 ng/mL. The intraday and interday precisions were below 12.1% for all the analytes in terms of relative standard deviation, and the accuracy was within ±11.5% in terms of relative error. The extraction recovery, matrix effect and stability were satisfactory in rat plasma. The validated method was successfully applied to a pharmacokinetic study of ferulic acid, paeoniflorin, and albiflorin after oral administration of Danggui‐Shaoyao‐San to rats.  相似文献   

14.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC–MS/MS) method is described for the simultaneous determination of silodosin (SLD) and its active metabolite silodosin β‐d ‐glucuronide (KMD‐3213G) in human plasma. Liquid–liquid extraction of plasma samples was carried out with ethyl acetate and methyl tert‐butyl ether solvent mixture using deuterated analogs as internal standards. The extraction recoveries of SLD and KMD‐3213G were in the ranges 90.8–93.4 and 87.6–89.9%, respectively. The extracts were analyzed on a Symmetry C18 (50 × 4.6 mm, 5 μm) column under gradient conditions using 10 mm ammonium formate in water and methanol–acetonitrile (40:60, v/v), within 6.0 min. For MS/MS measurements, ionization of the analytes was carried out in the positive ionization mode and the transitions monitored were m/z 496.1 → 261.2 for SLD and m/z 670.2 → 494.1 for KMD‐3213G. The method showed good linearity, accuracy, precision and stability in the range 0.10–80.0 ng/mL for SLD and KMD‐3213G. The IS‐normalized matrix factors obtained were highly consistent, ranging from 0.962 to 1.023 for both analytes. The method was used to support a bioequivalence study of SLD and its metabolite in healthy volunteers after oral administration of 8 mg silodosin capsules.  相似文献   

15.
An LC‐MS/MS method was developed for the first time to simultaneously determine hyperoside and 2′′–O‐galloylhyperin, two major components in Pyrola calliantha extract, in rat plasma. Following extraction by one‐step protein precipitation with methanol, the analytes were separated on a Venusil MP‐C18 column within 2 min, using methanol–water–formic acid (50:50:0.1, v/v/v) as the mobile phase at a flow rate of 0.4 mL/min. Detection was performed on electrospray negative ionization mass spectrometry by multiple‐reaction monitoring of the transitions of 2′′–O‐galloylhyperin at m/z 615.1 → 301.0, of hyperoside at m/z 463.1 → 300.1, and of internal standard at m/z 415.1 → 295.1. The limits of quantification were 2 ng/mL for both hyperoside and 2′′–O‐galloylhyperin. The precisions were <13.1%, and the accuracies were between ?9.1 and 5.5% for both compounds. The method was successfully applied in pharmacokinetic studies following intravenous administration of the total flavonoids of P. calliantha extract in rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The present investigation describes the development and validation of a sensitive liquid chromatography–mass spectrometry/mass spectrometry (LC‐MS/MS) method for the estimation of dorsomorphin in rat plasma. A sensitive LC‐MS/MS method was developed using multiple reaction monitoring mode, with the transition of m/z (Q1/Q3) 400.2/289.3 for dorsomorphin and m/z (Q1/Q3) 306.2/236.3 for zaleplon. Chromatographic separation was achieved on a reverse phase Agilent XDB C18 column (100 × 4.6 mm, 5 µm). The mobile phase consisted of acetonitrile and 5 mm ammonium acetate buffer (pH 6.0) 90:10 v/v, at a flow rate of 0.8 mL/min. The effluence was ionized in positive ion mode by electrospray ionization (ESI) and quantitated by mass spectrometry. The retention times of dorsomorphin and internal standard were found to be 2.13 and 1.13 min, respectively. Mean extraction recovery of dorsomorphin and internal standard in rat plasma was above 80%. Dorsomorphin calibration curve in rat plasma was linear (r2 ≥ 0.99) ranging from 0.005 to 10 µg/mL. Inter‐day and intra‐day precision and accuracy were found to be within 85–115% (coefficient of variation). This method was successfully applied for evaluation of the oral pharmacokinetic profile of dorsomorphin in male Wistar rats. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
A series of 4‐substituted 3‐hydroxyfurazans were subjected to electrospray ionization tandem mass spectrometry. At low collision energy, oxyisocyanate ([O=C=N–O]?, m/z 58) was formed as the predominant product ion from each deprotonated 3‐hydroxyfurazan, indicating cleavage of the heterocyclic ring. The facile energetics of this characteristic fragmentation process was confirmed by density functional computations.  相似文献   

18.
Electrospray‐generated precursor ions usually follow the ‘even‐electron rule’ and yield ‘closed shell’ fragment ions. We characterize an exception to the ‘even‐electron rule.’ In negative ion electrospray mass spectrometry (ES‐MS), 2‐(ethoxymethoxy)‐3‐hydroxyphenol (2‐hydroxyl protected pyrogallol) easily formed a deprotonated molecular ion (M‐H)? at m/z 183. Upon low‐energy collision induced decomposition (CID), the m/z 183 precursor yielded a radical ion at m/z 124 as the base peak. The radical anion at m/z 124 was still the major fragment at all tested collision energies between 0 and 50 eV (Elab). Supported by computational studies, the appearance of the radical anion at m/z 124 as the major product ion can be attributed to the combination of a low reverse activation barrier and resonance stabilization of the product ions. Furthermore, our data lead to the proposal of a novel alternative radical formation pathway in the protection group removal of pyrogallol. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A highly sensitive ultra high pressure liquid chromatography (UHPLC‐MSMS) method for estimation of ropinirole in rat brain homogenate and plasma has been validated. The method was successfully used for the degradation kinetics in different stress condition and regulated temperature. The chromatographic separation was achieved using isocratic mobile phase, consisting of acetonitrile–2mM ammoniumacetate (28:72 v/v; 0.25 mL min?1). The mass spectrometer was operated in synapt mass spectrometry mode via positive electrospray ionization using the transitions m/z 260 → m/z 261 for ropinirole, and m/z 324.39 → m/z 262.161 as a parent ion of escitalopram (IS). The assay for ropinirole was linear over the range of 0.5–100 ng mL?1 (r2; 0.999). The intra‐ and inter day precisions were less than 11.2% in terms of relative standard deviation (R.S.D.), and the accuracy was within ±6.4% in terms of relative error (RE). The mean extraction‐efficiency of QC samples (MQC, 8 ng/mL) was ≥80%. The lower limit of quantification (LLOQ) was 0.049 ng/mL where as lower limit of detection (LLOD) was 0.016 ng/mL. All the peaks of degradation were well resolved. The degradation kinetics of ropinirole, showed highest stability (t1/2 256.66/h; t0.9, 39.11/h) in acidic medium, lower stability in alkaline environment (t1/2, 103.43/h; t0.9, 15.76/h) and highly susceptible in oxidative environment (t1/2, 21.58/h; t0.9, 3.28/h). The applicability of this assay was demonstrated and successfully applied for pharmacokinetic profiling of ropinirole in Wister rat brain homogenate after intranasal administration.  相似文献   

20.
Upon collision‐induced activation, gaseous sodium adducts generated by electrospray ionization of disodium salts of 1,2‐ 1,3‐, and 1,4‐benzene dicarboxylic acids (m/z 233) undergo an unprecedented expulsion of CO2 by a rearrangement process to produce an ion of m/z 189 in which all three sodium atoms are retained. When isolated in a collision cell of a tandem‐in‐space mass spectrometer, and subjected to collision‐induced dissociation (CID), only the m/z 189 ions derived from the meta and para isomers underwent a further CO2 loss to produce a peak at m/z 145 for a sodiated arene of formula (Na3C6H4)+. This previously unreported m/z 145 ion, which is useful to differentiate meta and para benzene dicarboxylates from their ortho isomer, is in fact the sodium adduct of phenelenedisodium. Moreover, the m/z 189 ion from all three isomers readily expelled a sodium radical to produce a peak at m/z 166 for a radical cation [(?C6H4CO2Na2)+], which then eliminated CO2 to produce a peak at m/z 122 for the distonic cation (?C6H4Na2)+. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号