首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A headspace solid‐phase microextraction method was developed for the preconcentration and extraction of methyl tert‐butyl ether. An ionic‐liquid‐mediated multiwalled carbon nanotube–poly(dimethylsiloxane) hybrid coating, which was prepared by covalent functionalization of multiwalled carbon nanotubes with hydroxyl‐terminated poly(dimethylsiloxane) using the sol–gel technique, was used as solid‐phase microextraction adsorbent. This innovative fiber exhibited a highly porous surface structure, high thermal stability (at least 320°C) and long lifespan (over 210 uses). Potential factors affecting the extraction efficiency were optimized. Under the optimum conditions, the method LOD (S/N = 3) was 0.007 ng/mL and the LOQ (S/N = 10) was 0.03 ng/mL. The calibration curve was linear in the range of 0.03–200 ng/mL. The RSDs for one fiber (repeatability, n = 5) at three different concentrations (0.05, 1, and 150 ng/mL) were 5.1, 4.2, and 4.6% and for the fibers obtained from different batches (reproducibility, n = 3) were 6.5, 5.9, and 6.3%, respectively. The developed method was successfully applied to the determination of methyl tert‐butyl ether in different real water samples on three consecutive days. The relative recoveries for the spiked samples with 0.05, 1, and 150 ng/mL were between 94–104%.  相似文献   

2.
A highly porous fiber coated with polythiophene/hexagonally ordered silica nanocomposite was prepared for solid‐phase microextraction (SPME). The prepared nanomaterial was immobilized onto a stainless‐steel wire for the fabrication of the SPME fiber. Polythiophene/hexagonally ordered silica nanocomposite fibers were used for the extraction of some polycyclic aromatic hydrocarbons from water samples. The extracted analytes were transferred to the injection port of a gas chromatograph using a laboratory‐designed SPME device. The results obtained prove the ability of the polythiophene/hexagonally ordered silica material as a new fiber for the sampling of organic compounds from water samples. This behavior is due most probably to the increased surface area of the polythiophene/hexagonally ordered silica nanocomposite. A one‐at‐a‐time optimization strategy was applied for optimizing the important extraction parameters such as extraction temperature, extraction time, ionic strength, stirring rate, and desorption temperature and time. Under the optimum conditions, the LOD of the proposed method is 0.1–3 pg/mL for analysis of polycyclic aromatic hydrocarbons from aqueous samples, and the calibration graphs were linear in a concentration range of 0.001–20 ng/mL (R2 > 0.990) for most of the polycyclic aromatic hydrocarbons. The single fiber repeatability and fiber‐to‐fiber reproducibility were less than 8.6 and 19.1% (n = 5), respectively.  相似文献   

3.
Graphene is a novel and interesting carbon material that could be used for the separation and purification of some chemical compounds. In this investigation, graphene was used as a novel fiber‐coating material for the solid‐phase microextraction (SPME) of four triazine herbicides (atrazine, prometon, ametryn and prometryn) in water samples. The main parameters that affect the extraction and desorption efficiencies, such as the extraction time, stirring rate, salt addition, desorption solvent and desorption time, were investigated and optimized. The optimized SPME by graphene‐coated fiber coupled with high‐performance liquid chromatography‐diode array detection (HPLC‐DAD) was successfully applied for the determination of the four triazine herbicides in water samples. The linearity of the method was in the range from 0.5 to 200 ng/mL, with the correlation coefficients (r) ranging from 0.9989 to 0.9998. The limits of detection of the method were 0.05‐0.2 ng/mL. The relative standard deviations varied from 3.5 to 4.9% (n=5). The recoveries of the triazine herbicides from water samples at spiking levels of 20.0 and 50.0 ng/mL were in the range between 86.0 and 94.6%. Compared with two commercial fibers (CW/TPR, 50 μm; PDMS/DVB, 60 μm), the graphene‐coated fiber showed higher extraction efficiency.  相似文献   

4.
In this research, the headspace solid‐phase microextraction (SPME) coupled with GC flame ionization detector was applied for the determination of some monocyclic aromatic amines in real water and urine samples. A sol–gel technique was applied for the preparation of the SPME fibers. Two different sol–gel coatings, (PEG and poly(ethylene glycol) modified with multi‐walled carbon nanotubes [PEG/CNTs]), were prepared and compared. Extraction efficiency of PEG/CNTs was better than PEG fiber in the same conditions. To obtain maximum extraction efficiency, some parameters such as desorption temperature and time, temperature and time of extraction, salt effect, pH, and stirring speed were investigated and optimized for PEG/CNTs fiber. Under optimized conditions, the LODs (S/N = 3) were in the range of 0.5–50 ng/L and limits of quantification (S/N = 10) were between 1 and 500 ng/L. Repeatability (n = 5) was in the range of 3.2–9.1% and reproducibility (n = 3) was obtained from 5.5 to 12.0%. The method was successfully applied to the analysis of real water and urine samples with recoveries from 63.7 to 97.0%.  相似文献   

5.
田孟魁  冯喜兰 《中国化学》2008,26(7):1251-1256
建立了顶空固相微萃取联结气相色谱-电子捕获检测器(HS-SPME-GC-ECD)测定水中多溴联苯醚的方法。制作了多壁碳纳米管涂层固相微萃取探头。优化了萃取时间,萃取温度,搅拌速度,顶空体积,溶液的pH,离子强度及有机溶剂等影响萃取效率的各种因素。比较了室温和100 ℃顶空萃取和直接萃取的效率。结果表明,室温下直接萃取比顶空萃取的效率高2-4倍,而在100 ℃时顶空萃取比直接萃取的效率高1-8倍。除BDE-154外,无论直接萃取还是顶空萃取,100 ℃时的萃取效率均高于室温。方法的线性范围50-1600 ng/L,相关系数为0.995-0.998,5种多溴联苯醚的最低检出限(S/N=3)为1.14-16.25 ng/L,相对标准偏差(RSD%,n=5)小于10%。本方法用于真实水样的测定,回收率为74.2%-98.7%。  相似文献   

6.
In this work, a graphene composite was coated onto etched stainless‐steel wire through a sol–gel technique and it was used as a solid‐phase microextraction (SPME) fiber. The prepared fiber was characterized by SEM, which revealed that the fiber had a highly porous structure. The application of the fiber was evaluated through the headspace SPME of five halogenated aromatic hydrocarbons (chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, 1,2‐dichlorobenzene, and 1,2,4‐trichlorobenzene) in water samples followed by GC with flame ionization detection. The main factors influencing the extraction efficiency, including headspace volume, extraction time, extraction temperature, stirring rate, ionic strength of sample solution, and desorption conditions, were studied and optimized. Under the optimum conditions, the linearity of the method ranged from 2.5 to 800.0 μg/L for 1,2,4‐trichlorobenzene and from 2.5 to 500.0 μg/L for chlorobenzene, bromobenzene, 1,3‐dichlorobenzene, and 1,2‐dichlorobenzene, with the correlation coefficients (r) ranging from 0.9962 to 0.9980, respectively. The LODs (S/N = 3) of the method for the analytes were in the range between 0.5 and 1.0 μg/L. The recoveries of the method for the analytes obtained for the spiked water samples at 50.0 and 250.0 μg/L were from 76.0 to 104.0%.  相似文献   

7.
Nanoporous silica was prepared and functionalized with amino propyl‐triethoxysilane to be used as a highly porous fiber‐coating material for solid‐phase microextraction (SPME). The prepared nanomaterials were immobilized onto a stainless steel wire for fabrication of the SPME fiber. The proposed fiber was evaluated for the extraction of volatile component of Citrus aurantium L. leaves. A homemade microwave‐assisted extraction followed by headspace (HS) solid‐phase apparatus was used for the extraction of volatile components. For optimization of factors affecting the extraction efficiency of the volatile compounds, a simplex optimization method was used. The repeatability for one fiber (n = 4), expressed as RSD, was between 3.1 and 8.6% and the reproducibility for five prepared fibers was between 10.1 and 14.9% for the test compounds. Using microwave‐assisted distillation HS‐SPME followed by GC‐MS, 53 compounds were separated and identified in C. aurantium L., which mainly included limonene (62.0%), linalool (7.47%), trans‐β‐Ocimene (3.47%), and caryophyllene (2.05%). In comparison to a hydrodistillation method, the proposed technique could equally monitor almost all the components of the sample, in an easier way, which was rapid and required a much lower amount of sample.  相似文献   

8.
We developed a solid‐phase microextraction coupled to GC with electron‐capture detection method for the detection of acrylamide in food samples. Single‐walled carbon nanotubes and polypyrrole were electropolymerized onto a stainless‐steel wire as a coating, which possessed a homogeneous, porous, and wrinkled surface, chemical and mechanical stability, long lifespan (over 300 extractions), and good extraction efficiency for acrylamide. The linearity range between the signal intensity and the acrylamide concentration was found to be in the range 0.001–1 μg/mL, and the coefficient of determination was 0.9985. The LOD, defined as three times the baseline noise, was 0.26 ng/mL. The reproducibility for each single fiber (n = 6) and the fiber‐to‐fiber (n = 5) repeatability prepared in the same batch were less than 4.1 and 11.2%, respectively.  相似文献   

9.
A simple, rapid, highly efficient, and reliable sample preparation method has been developed for the extraction and analysis of triazole pesticides from cucumber, lettuce, bell pepper, cabbage, and tomato samples. This new sorbent in the hollow‐fiber solid‐phase microextraction method is based on the synthesis of polyethylene glycol‐polyethylene glycol grafted flower‐like cupric oxide nanoparticles using sol–gel technology. Afterward, the analytes were analyzed by high‐performance liquid chromatography with ultraviolet detection. The main parameters that affect microextraction efficiency were evaluated and optimized. This method has afforded good linearity ranges (0.5–50 000 ng/mL for hexaconazol, 0.012–50 000 ng/mL for penconazol, and 0.02–50 000 ng/mL for diniconazol), adequate precision (2.9–6.17%, n = 3), batch‐to‐batch reproducibility (4.33–8.12%), and low instrumental LODs between 0.003 and 0.097 ng/mL (n = 8). Recoveries and enrichment factors were 85.46–97.47 and 751–1312%, respectively.  相似文献   

10.
A solid‐phase microextraction (SPME) fiber coated with poly(methacrylic acid‐ethylene glycol dimethacrylate) coupled to GC with a micro electron‐capture detector was developed for the determination of four chlorphenols in water samples for the first time. A novel and simple method for the preparation of this novel SPME fiber was proposed by copolymerization of methacrylic acid and ethylene glycol dimethacrylate in an appropriate solvent using a glass capillary as a “mold”. The factors affecting the polymerization were optimized in detail. Furthermore, the extraction performance of the poly(methacrylic acid‐ethylene glycol dimethacrylate) fiber was evaluated. Moreover, experimental headspace‐SPME parameters, such as extraction temperature, extraction time, salt concentration, stirring speed, and pH, were optimized by orthogonal array experimental designs. Under the optimized conditions, the target analytes were linear in the range of 0.2–50 ng/mL, and the correlation coefficients were all greater than 0.99. RSD was less than 8.9%, and the detection limits were in the range of 0.1–10 ng/L. Four cholorphenols were detected from tap and lake water samples using the proposed method, with the recoveries of spiked natural water samples were ranged from 91.8 to 110.8, and 90.6 to 111.4% for tap and lake water samples, respectively.  相似文献   

11.
In the present work, the effect of substrate porosity for preparation of solid‐phase microextraction (SPME) fibers was investigated. The fibers were prepared by electrodeposition of sol‐gel coatings using negative potentials on porous Cu wire and compared with previous reported technique for preparation of SPME fibers using positive potentials on smooth gold wire. Porous substrate was prepared by electrodeposition of a thin layer of Cu on a Cu wire. The extraction capability of prepared fibers was evaluated through extraction of some aromatic hydrocarbons from the headspace of aqueous samples. The effect of substrate porosity and some operating parameters on extraction efficiency was optimized. The results showed that extraction efficiency of SPME fibers highly depends on porosity of the substrate. The LOD ranged from 0.005 to 0.010 ng/mL and repeatability at the 1 ng/mL was below 12%. Electrodeposited films were characterized for their surface morphology and thermal stability using SEM and thermogravimetric analysis, respectively. SEM analysis revealed formation of porous substrate and subsequently porous coating on the wire surface and thermogravimetric analysis showed high thermal stability of the prepared fiber.  相似文献   

12.
For the first time, a polypyrrole–carbon nanotubes–silicon dioxide composite film coated on a steel wire was prepared by an electrochemical method. Scanning electron microscopy images showed that this composite film was even and porous. The prepared fiber was used as an absorbent for the headspace solid‐phase microextraction of benzene, toluene, ethylbenzene, and o‐xylene, followed by gas chromatographic analysis. This method presented an excellent performance, which was much better than that of a polypyrrole–carbon nanotube fiber. It was found that under the optimized conditions, the linear ranges were 0.01–200 ng/mL with correlation coefficients >0.9953, the detection limits were 0.005–0.020 ng/mL, the relative standard deviations were 3.9–6.4% for five successive measurements with a single fiber, and the reproducibility was 5.5–8.5% (n = 3). Finally, the developed method was successfully applied to real water samples, and the relative recoveries obtained for the spiked water samples were from 91.0 to 106.7%.  相似文献   

13.
A novel metal‐ion‐mediated complex‐imprinted‐polymer‐coated solid‐phase microextraction (SPME) fiber used to specifically recognize thiabendazole (TBZ) in citrus and soil samples was developed. The complex‐imprinted polymer was introduced as a novel SPME coating using a “complex template” constructed with Cu(II) ions and TBZ. The recognition and enrichment properties of the coating in water were significantly improved based on the metal ion coordination interaction rather than relying on hydrogen bonding interactions that are commonly applied for the molecularly imprinting technique. Several parameters controlling the extraction performance of the complex‐imprinted‐polymer‐coated fiber were investigated including extraction solvent, pH value, extraction time, metal ion species, etc. Furthermore, SPME coupled with HPLC was developed for detection of TBZ, and the methods resulted in good linearity in the range of 10.0–150.0 ng/mL with a detection limit of 2.4 ng/mL. The proposed method was applied to the analysis of TBZ in spiked soil, orange, and lemon with recoveries of 80.0–86.9% and RSDs of 2.0–8.1%. This research provides an example to prepare a desirable water‐compatible and specifically selective SPME coating to extract target molecules from aqueous samples by introducing metal ions as the mediator.  相似文献   

14.
A fiber‐coated polypyrrole–montmorillonite nanocomposite was prepared for solid‐phase microextraction. The fiber coating can be prepared easily; it is mechanically stable and exhibits relatively high thermal stability. The prepared fiber was evaluated for the extraction of some phenolic compounds from aqueous sample solutions by gas chromatography–mass spectrometry. The effects of the extraction and desorption parameters including extraction time, extraction temperature, stirring rate, ionic strength, pH and desorption temperature and time have been studied. At optimum conditions, the repeatability for one fiber (n = 5), expressed as % relative standard deviation was between 6.5 and 7.8% for the phenolic compounds. The detection limits for the studied phenolic compounds were between 0.05–1.3 ng/mL. The developed method offers the advantage of being simple to use, with shorter analysis time, lower cost, thermal stability of the fibers, and high relative recovery in comparison to conventional methods of analysis.  相似文献   

15.
The surface of a stainless steel fiber was made larger, porous and cohesive by platinizing for tight attachment of its coating. Then it was coated by a polyaniline/polypyrrole/graphene oxide (PANI/PP/GO) nanocomposite film using electrochemical polymerization. The prepared PANI/PP/GO fiber was used for headspace solid‐phase microextraction (HS‐SPME) of linear aliphatic aldehydes in rice samples followed by GC‐FID determination. To achieve the highest extraction efficiency, various experimental parameters including extraction time and temperature, matrix modifier and desorption condition were studied. The linear calibration curves were obtained over the range of 0.05–20 μg g−1 (R 2 > 0.99) for C4–C11 aldehydes. The limits of detection were found to be in the range of 0.01–0.04 μg g−1. RSD values were calculated to be <7.4 and 10.7% for intra‐ and inter‐day, respectively. The superiority of the prepared nanocomposite SPME fiber was established by comparison of its results with those obtained by polydimethylsiloxane, carbowax–divinylbenzene, divinylbenzene–carboxen–polydimethylsiloxane and polyacrylate commercial ones. Finally, the nanocomposite fiber was used to extract and determine linear aliphatic aldehydes in 18 rice samples.  相似文献   

16.
In this research, a carbon nanotube/layered double hydroxide nanocomposite was synthesized by an in situ growth route by electrostatic force. The prepared carbon nanotube/layered double hydroxide nanocomposite was successfully prepared and deposited on a stainless‐steel wire for the fabrication of the solid‐phase microextraction fiber. The fiber was evaluated for the extraction of phenolic compounds from water samples. Analytical merits of the method, under optimum conditions (extraction temperature: 75°C, extraction time: 30 min, desorption time: 2 min, desorption temperature 260°C, salt concentration: 10% w/v) are 0.01–300 ng/mL for the linear dynamic range and 0.005–0.08 for the limit of detection. In optimum conditions, the repeatability for one fiber (n = 3), expressed as relative standard deviation, was between 6.5 and 9.9% for the phenolic compounds.  相似文献   

17.
A sol–gel coating technique was applied for the preparation of a solid‐phase microextraction fiber by coating the metal–organic framework UiO‐67 onto a stainless‐steel wire. The prepared fiber was explored for the headspace solid‐phase microextraction of five nitrobenzene compounds from water samples before gas chromatography with mass spectrometric detection. The effects of the extraction temperature, extraction time, sample solution volume, salt addition, and desorption conditions on the extraction efficiency were optimized. Under the optimal conditions, the linearity was observed in the range of 0.015–12.0 μg/L for the compounds in water samples, with the correlation coefficients (r) of 0.9945–0.9987. The limits of detection of the method were 5.0–10.0 ng/L, and the recoveries of the analytes from spiked water samples for the method were in the range of 74.0–102.0%. The precision for the measurements, expressed as the relative standard deviation, was less than 11.9%.  相似文献   

18.
A porous and highly efficient polyaniline‐based solid‐phase microextraction (SPME) coating was successfully prepared by the electrochemical deposition method. A method based on headspace SPME followed by HPLC was established to rapidly determine trace chlorophenols in water samples. Influential parameters for the SPME, including extraction mode, extraction temperature and time, pH and ionic strength procedures, were investigated intensively. Under the optimized conditions, the proposed method was linear in the range of 0.5–200 μg/L for 4‐chlorophenol and 2,4,6‐trichlorophenol, 0.2–200 μg/L for 2,4‐dichlorophenol and 2–200 μg/L for 2,3,4,6‐tetrachlorophenol and pentachlorophenol, with satisfactory correlation coefficients (>0.99). RSDs were <15% (n = 5) and LODs were relatively low (0.10–0.50 μg/L). Compared to commercial 85 μm polyacrylate and 60 μm polydimethylsiloxane/divinylbenzene fibers, the homemade polyaniline fiber showed a higher extraction efficiency. The proposed method has been successfully applied to the determination of chlorophenols in water samples with satisfactory recoveries.  相似文献   

19.
A metal–organic framework/periodic mesoporous silica (MOF‐5@SBA‐15) hybrid material has been prepared by using SBA‐15 as a matrix. The prepared MOF‐5@SBA‐15 hybrid material was then deposited on a stainless‐steel wire to obtain the fiber for the solid‐phase microextraction of phenolic compounds. Modifications in the metal–organic framework structure have proven to improve the extraction performance of MOF/SBA‐15 hybrid materials, compared to pure MOF‐5 and SBA‐15. Optimum conditions include an extraction temperature of 75°C, a desorption temperature of 260°C, and a salt concentration of 20% w/v. The dynamic linear range and limit of detection range from 0.1–500 and from 0.01–3.12 ng/mL, respectively. The repeatability for one fiber (n = 3), expressed as relative standard deviation, is between 4.3 and 9.6%. The method offers the advantage of being simple to use, rapid, and low cost, the thermal stability of the fiber, and high relative recovery (compared to conventional methods) represent additional attractive features.  相似文献   

20.
We describe the synthesis of a layered zinc hydroxide‐dodecyl sulfate organic–inorganic hybrid nanocomposite as a new solid‐phase microextraction fiber. The fiber coating can be prepared easily in a short time and the reaction is at room temperature; it is mechanically stable and exhibits relatively high thermal stability. The synthesized layered zinc hydroxide‐dodecyl sulfate nanocomposite was successfully prepared and immobilized on a stainless steel wire and evaluated for the extraction of aromatic compounds from aqueous sample solutions in combination with gas chromatography and mass spectrometry. The method yields good results for some validation parameters. Under optimum conditions (extraction time: 15 min, extraction temperature: 50°C, desorption time: 1 min, desorption temperature: 250°C, salt concentration: 0.5 g/mL), the limit of detection and dynamic linear range were 0.69–3.2 ng/L and 10–500 ng/L, respectively. The method was applied to the analyses of benzene, toluene, ethylbenzene, and o‐, p‐, and m‐xylenes in two real water samples collected from the Aji river and Mehran river, Tabriz, Iran. Under optimum conditions, the repeatability and reproducibility for one fiber (n = 3), expressed as the relative standard deviation, was 3.2–7.3% and 4.2–11.2% respectively. The fibers are thermally stable and yield better recoveries than conventional methods of analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号