首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Overcoming epidermal growth factor receptor resistance is a critical problem that needs to be solved in clinical practice. Drugs that downregulate the fatty acid synthase‐epidermal growth factor receptor will become novel treatments for non‐small cell lung cancer. Solanum nigrum, extracted with water at 4°C, shows strong cytotoxic activity and inhibits tumor growth in Lewis tumor bearing‐mice in a dose‐dependent manner. A novel active compound in S. nigrum, solaoiacid, was successfully separated and purified from S. nigrum by preparative high‐performance liquid chromatography with mass spectrometry and ultra high performance liquid chromatography with time‐of‐flight tandem mass spectrometry. The IC50 of solaoiacid on lung cancer cells was 2.3 µmol/L, which was significantly lower than that of the known steroidal glycoalkaloid. Label‐free proteomics and STRING Network analysis were used to identify significantly deregulated proteins in lung cancer cells that were treated with the fresh ripe fruit extracts of S. nigrum. S. nigrum regulates multiple signal pathways, including the epidermal growth factor receptor pathway. S. nigrum downregulated 24 main proteins with direct roles in fatty acid biosynthesis. Both S. nigrum and solaoiacid showed strong downregulation of the fatty acid synthase‐epidermal growth factor receptor and anti‐non‐small cell lung cancer effects, and thus will become a novel drug for the treatment of non‐small cell lung cancer.  相似文献   

2.
Tandem mass spectrometry (MS/MS) has become a prominent method for screening newborns for diseases such as organic acidemia and fatty acid oxidation defects, although current methods cannot separate acylcarnitine isomers. Accurate determination of dicarboxylic acylcarnitines such as methylmalonylcarnitine and glutarylcarnitine has not been carried out, because obtaining standards of these acylcarnitines is difficult. We attempted the individual determinations of acylcarnitines with isomers and dicarboxylic acylcarnitines by applying high-performance liquid chromatography (HPLC). Chromatographic separation was performed by gradient elution using a mixture of 0.08% aqueous ion-pairing agent and acetonitrile as the mobile phase. Mass transitions of m/z 161.8-->84.8 for carnitine and m/z 164.8-->84.8 for deuterated carnitine were monitored in positive ion electrospray ionization mode. One carnitine and 16 acylcarnitines were quantified. The limit of quantitation (LOQ) was 0.1 micromol/L for methylmalonylcarnitine and 0.05 micromol/L for the other acylcarnitines. Intra-day and inter-day coefficients of variance (CVs) were <8.3% and <8.8%, respectively, for all acylcarnitines in serum, and both were <9.2% in urine. Mean recoveries were >90% for all acylcarnitines. Human samples were quantified by this method. After addition of deuterated acylcarnitines as internal standards, acylcarnitines in serum or urine were extracted using a solid-phase extraction cartridge. In healthy adult individuals, isobutyryl-, 2-methylbutyryl- and isovalerylcarnitine were detected in serum and urine. Dicarboxylic acylcarnitines were detected in urine. High concentrations of methylmalonylcarnitine and propionylcarnitine were found in both the serum and the urine of a patient with methylmalonic acidemia. The described HPLC/MS/MS method could separate most acylcarnitine isomers and quantify them, potentially allowing detailed diagnoses and follow-up treatment for those diseases.  相似文献   

3.
Easy‐to‐use early cancer detection methods based on metabolomics using serum samples have been developed recently. Among metabolites, amino acids and acylcarnitine are two of the most suitable candidates for diagnosing lung cancer. The purpose of the present study was to develop a novel, sensitive and specific liquid chromatography–tandem mass spectrometry (LC–MS/MS) method to simultaneously determine 13 amino acids and 8 acylcarnitines in lung cancer patients in serum. After derivatization, the 21 analytes were separated using a C18 column with gradient elution program in 14 min, obtaining recovery within 90.4–113.8% and precision within 0.3–14.8%. The method was successfully applied in concentration determination of lung cancer patients and healthy controls. The results showed that the serum concentration of lung cancer patients were significant from those of healthy controls.  相似文献   

4.
The discovery of new laryngeal cancer‐related metabolite biomarkers could help to facilitate early diagnosis. A serum metabolomics study from laryngeal cancer patients and healthy individuals was conducted using liquid chromatography coupled with quadrupole time‐of‐flight mass spectrometry. Univariate and multivariate statistics were used to discriminate laryngeal cancer patients and healthy individuals. 1‐Palmitoyl‐sn‐glycero‐3‐phosphocholine (LysoPC 16:0), 1‐o‐hexadecyl‐2‐acetyl‐sn‐glycero‐3‐phosphocholine (PAF) and 1,2‐dipalmitoyl‐sn‐glycero‐3‐phosphocholine were found to be significantly different between the laryngeal cancer group and the healthy group. They are mainly involved in phospholipids catabolism, linoleic acid metabolism, α‐linoleic acid metabolism and arachidonic acid metabolism. The area under the curve of the biomarker combined by two metabolites (LysoPC 16:0 and PAF) was 0.935, the sensitivity was 0.962 and the specificity was 0.825. LysoPC 16:0 and PAF may show diagnostic potential for laryngeal carcinoma.  相似文献   

5.
Carnitine is an amino acid derivative that plays a key role in energy metabolism. Endogenous carnitine is found in its free form or esterified with acyl groups of several chain lengths. Quantification of carnitine and acylcarnitines is of particular interest for screening for research and metabolic disorders. We developed a method with online solid-phase extraction coupled to high-performance liquid chromatography and tandem mass spectrometry to quantify carnitine and three acylcarnitines with different polarity (acetylcarnitine, octanoylcarnitine, and palmitoylcarnitine). Plasma samples were deproteinized with methanol, loaded on a cation exchange trapping column and separated on a reversed-phase C8 column using heptafluorobutyric acid as an ion-pairing reagent. Considering the endogenous nature of the analytes, we quantified with the standard addition method and with external deuterated standards. Solid-phase extraction and separation were achieved within 8 min. Recoveries of carnitine and acylcarnitines were between 98 and 105 %. Both quantification methods were equally accurate (all values within 84 to 116 % of target concentrations) and precise (day-to-day variation of less than 18 %) for all carnitine species and concentrations analyzed. The method was used successfully for determination of carnitine and acylcarnitines in different human samples. In conclusion, we present a method for simultaneous quantification of carnitine and acylcarnitines with a rapid sample work-up. This approach requires small sample volumes and a short analysis time, and it can be applied for the determination of other acylcarnitines than the acylcarnitines tested. The method is useful for applications in research and clinical routine.
Figure
A method is presented for the analysis of carnitine and acylcarnitines in urine which includes a precipitation step, on-column extraction and LC-MS/MS. The run time is 8 minutes and the method was validated for carnitine, acetylcarnitine, octanoylcarnitine and palmitoylcarnitine. Analysis of a patient sample with medium-chain acyl-CoA dehydrogenase deficiency is shown.  相似文献   

6.
An ultra‐high‐performance liquid chromatography–mass spectrometry (UPLC/MS/MS) method was developed and validated for the quantification of trimethylamine‐N‐oxide (TMAO) simultaneously with TMAO‐related molecules l ‐carnitine and γ‐butyrobetaine (GBB) in human blood plasma. The separation of analytes was achieved using a Hydrophilic interaction liquid chromatography (HILIC)‐type column with ammonium acetate–acetonitrile as the mobile phase. TMAO determination was validated according to valid US Food and Drug Administration guidelines. The developed method was successfully applied to plasma samples from healthy volunteers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Some 4‐anilinofuro[2,3‐b]quinoline derivatives were synthesized from dictamnine, a natural alkaloid, and evaluated for their cytotoxicity in the NCI's full panel of 60 human cancer cell lines derived from nine cancer cell types, including leukemia, non‐small‐cell lung cancer, colon cancer, CNS cancer, melanoma, ovarian cancer, renal cancer, prostate cancer, and breast cancer. 1‐[4‐(Furo[2,3‐b]quinolin‐4‐ylamino)phenyl]ethanone ( 5 ) (mean GI50=0.025 μM ), bearing an 4‐acetylanilino substituent at C(4) of furo[2,3‐b]quinoline, was more active than its 3‐acetylanilino counterpart 7 (mean GI50=5.27 μM ), and both clinically used anticancer drugs, N‐[4‐(acridin‐9‐ylamino)‐3‐methoxyphenyl]methanesulfonamide (m‐AMSA; mean GI50=0.44 μM ) and daunomycin (mean GI50=0.044 μM ). Compound 5 was capable of inhibiting all types of cancer cells tested with a mean GI50 of less than 0.04 μM in each case except for the non‐small‐cell lung cancer (average GI50=1.75 μM ). Although non‐small‐cell lung cancer is resistant to compound 5 , the sensitivity within this type of cancer cells varies: HOP‐62 (GI50<0.01 μM ), NCI‐H460 (GI50=0.01 μM ), and NCI‐H522 (GI50<0.01 μM ) are very sensitive, while HOP‐92 (GI50 = 12.4 μM ) is resistant. Among these non‐small‐cell lung cancers, NCI‐H522 was found to be very sensitive to 5, 8a , and 8b with a GI50 values of <0.01, 0.074, and <0.01 μM , respectively.  相似文献   

8.
A quantitative analysis of polyamines in lung cancer patient fingernails by the combination of 4‐(N,N‐dimethylaminosulfonyl)‐7‐fluoro‐2,1,3‐benzoxadiazole derivatives and liquid chromatography–electrospray ionization tandem mass spectrometry is described. The reaction of the reagent with eight kinds of polyamines, that is, N1‐acetylputrescine (N1‐actPUT), N8‐acetylspermidine, N1‐acetylspermine, 1,3‐diaminopropane, putrescine (PUT), cadaverine, spermidine and spermine (SPM) effectively occurs at 60 °C for 30 min. The detection limits (signal‐to‐noise ratio 5) were 5–100 fmol. A good linearity was achieved from the calibration curves, which was obtained by plotting the peak area ratios of the analytes relative to the internal standard (IS), that is, 1,6‐diaminohexane, vs the injected amounts of polyamines (r2 > 0.996), and the intra‐day and inter‐day assay precisions were <9.84%. Furthermore, the recoveries (%) of the polyamines spiked in the human fingernails were 89.14–110.64. The present method was applied to human fingernail samples from 17 lung cancer patients and 39 healthy volunteers. The polyamine concentration was different based on the gender, that is, the N1‐actPUT and PUT contents were 3.10 times and 2.56 times higher in healthy men than in women, respectively. Additionally, in the lung cancer patient group, as compared with the healthy volunteers, the concentrations of SPM had a statistically significant (p < 0.05) correlation. Therefore, because the proposed method provides a good mass accuracy and the trace detection of the polyamines in human fingernails, this analytical technique could be a noninvasive technique to assist in the diagnosis and assessment of disease activity in lung cancer patients. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

9.
In Cannabis sativa, Δ9‐Tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A) is the non‐psychoactive precursor of Δ9‐tetrahydrocannabinol (Δ9‐THC). In fresh plant material, about 90% of the total Δ9‐THC is available as Δ9‐THCA‐A. When heated (smoked or baked), Δ9‐THCA‐A is only partially converted to Δ9‐THC and therefore, Δ9‐THCA‐A can be detected in serum and urine of cannabis consumers. The aim of the presented study was to identify the metabolites of Δ9‐THCA‐A and to examine particularly whether oral intake of Δ9‐THCA‐A leads to in vivo formation of Δ9‐THC in a rat model. After oral application of pure Δ9‐THCA‐A to rats (15 mg/kg body mass), urine samples were collected and metabolites were isolated and identified by liquid chromatography‐mass spectrometry (LC‐MS), liquid chromatography‐tandem mass spectrometry (LC‐MS/MS) and high resolution LC‐MS using time of flight‐mass spectrometry (TOF‐MS) for accurate mass measurement. For detection of Δ9‐THC and its metabolites, urine extracts were analyzed by gas chromatography‐mass spectrometry (GC‐MS). The identified metabolites show that Δ9‐THCA‐A undergoes a hydroxylation in position 11 to 11‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A (11‐OH‐Δ9‐THCA‐A), which is further oxidized via the intermediate aldehyde 11‐oxo‐Δ9‐THCA‐A to 11‐nor‐9‐carboxy‐Δ9‐tetrahydrocannabinolic acid‐A (Δ9‐THCA‐A‐COOH). Glucuronides of the parent compound and both main metabolites were identified in the rat urine as well. Furthermore, Δ9‐THCA‐A undergoes hydroxylation in position 8 to 8‐alpha‐ and 8‐beta‐hydroxy‐Δ9‐tetrahydrocannabinolic acid‐A, respectively, (8α‐Hydroxy‐Δ9‐THCA‐A and 8β‐Hydroxy‐Δ9‐THCA‐A, respectively) followed by dehydration. Both monohydroxylated metabolites were further oxidized to their bishydroxylated forms. Several glucuronidation conjugates of these metabolites were identified. In vivo conversion of Δ9‐THCA‐A to Δ9‐THC was not observed. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
In this study, tamoxifen metabolic profiles were investigated carefully. Tamoxifen was administered to two healthy male volunteers and one female patient suffering from breast cancer. Urinary extracts were analyzed by liquid chromatography quadruple time‐of‐flight mass spectrometry using full scan and targeted MS/MS techniques with accurate mass measurement. Chromatographic peaks for potential metabolites were selected by using the theoretical [M + H]+ as precursor ion in full‐scan experiment and m/z 72, 58 or 44 as characteristic product ions for N,N‐dimethyl, N‐desmethyl and N,N‐didesmethyl metabolites in targeted MS/MS experiment, respectively. Tamoxifen and 37 metabolites were detected in extraction study samples. Chemical structures of seven unreported metabolites were elucidated particularly on the basis of fragmentation patterns observed for these metabolites. Several metabolic pathways containing mono‐ and di‐hydroxylation, methoxylation, N‐desmethylation, N,N‐didesmethylation, oxidation and combinations were suggested. All the metabolites were detected in the urine samples up to 1 week. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The identification of impurities in l‐ carnitine by mass spectrometry is difficult because derivative reagents or ion pair reagents are usually used to separate and increase the retention of l‐ carnitine on the reversed‐phase column. In this study, four impurities including 3‐chloro‐2‐hydroxy‐N,N,N‐trimethylpropan‐1‐aminium, 3‐cyano‐2‐hydroxy‐N,N,N‐trimethylpropan‐1‐aminium, 3‐carboxy‐N,N,N‐trimethylprop‐2‐en‐1‐aminium, and 4‐chloro‐2,3,4‐trihydroxy‐N,N,N‐trimethylbutan‐1‐aminium were identified in l‐ carnitine and its tablets by using two‐dimensional column‐switching high‐performance liquid chromatography coupled with linear ion trap mass spectrometry. The first column was a C8 column at a flow rate of 0.15 mL/min; the detection wavelength was 220 nm. The second column was an Acclaim Q1 column using a gradient elution program with aqueous 30 mM ammonium acetate (pH 5.0) and acetonitrile as the mobile phase at a flow rate of 0.5 mL/min. The mass fragmentation patterns and structural assignments of impurities were studied, and the quantitative validation of three impurities was further investigated. The linearity (r 2) was found to be >0.99, with ranges from 0.2 to 50 ng/mL and 0.1 to 10 ng/mL. The method was used successfully for determination of impurities in five samples of l‐ carnitine and tablets.  相似文献   

12.
A high-performance liquid chromatography/mass spectrometry method was developed for the determination of carnitine, its biosynthetic precursor butyrobetaine, and eight acylcarnitines in plasma. The procedure includes a solid-phase extraction for carnitine and short- and medium-chain acylcarnitines, and a liquid-liquid extraction for protein-bound long-chain acylcarnitines, followed by separation on a reversed-phase column in the presence of a volatile ion-pairing reagent. Detection was achieved using an ion-trap mass spectrometer run in the tandem mass spectrometry (MS/MS) mode. The choice of the matrix for calibrators, used for quantification of these endogenous compounds, was also investigated. Validation was performed for standard quality controls diluted with 4% bovine serum albumin solution and for spiked plasma quality control samples at concentrations between 0.5 and 80 micromol/L, depending on the compound. Intra- and inter-day precisions for the determination of carnitine were below 3.4% and accuracies were between 95.2 and 109.0%. Application of the method to the diagnosis of pathological acylcarnitine profiles of metabolic disorders in a patient suffering from methylmalonic aciduria is presented. The method allows quantification of carnitine, butyrobetaine, acetylcarnitine and propionylcarnitine, and semiquantitative analysis of medium- and long-chain acylcarnitines. In contrast with other methods, no derivatization step is needed.  相似文献   

13.
Dibohemamines A–C ( 5 – 7 ), three new dimeric bohemamine analogues dimerized through a methylene group, were isolated from a marine‐derived Streptomyces spinoverrucosus. The structures determined by spectroscopic analysis were confirmed through the semi‐synthetic derivatization of monomeric bohemamines and formaldehyde. These reactions, which could occur under mild conditions, together with the detection of formaldehyde in the culture, revealed that this dimerization is a non‐enzymatic process. In addition to the unique dimerization of the dibohemamines, dibohemamines B and C were found to have nm cytotoxicity against the non‐small cell‐lung cancer cell line A549. In view of the potent cytotoxicity of compounds 6 and 7 , a small library of bohemamine analogues was generated for biological evaluation by utilizing a series of aryl and alkyl aldehydes.  相似文献   

14.
A simple method for the determination of betaine, l ‐carnitine, and choline in human urine was developed based on column‐switching ion chromatography coupled with nonsuppressed conductivity detection by using a self‐packed column. A pretreatment column (50 mm × 4.6 mm, id) packed with poly(glycidyl methacrylate‐divinylbenzene) microspheres was used for the extraction and cleanup of analytes. Chromatographic separation was achieved within 10 min on a cationic exchange column (150 mm × 4.6 mm, id) using maleic anhydride modified poly(glycidyl methacrylate‐divinylbenzene) as the particles for packing. The detection was performed by ion chromatography with nonsuppressed conductivity detection. Parameters including column‐switching time, eluent type, flow rates of eluent, and interfering effects were optimized. Linearity (r 2 ≥ 0.99) was obtained for the concentration range of 0.50–100, 0.75–100, and 0.25–100 μg/mL for betaine, l ‐carnitine, and choline, respectively. Detection limits were 0.12, 0.20, and 0.05 μg/mL for betaine, l ‐carnitine, and choline, respectively. The intra‐ and interday accuracy and precision for all quality controls were within ±10.11%. Satisfactory recovery was observed between 92.5 and 105.0%. The validated method was successfully applied for the determination of betaine, l ‐carnitine, and choline in urine samples from healthy people.  相似文献   

15.
A sequential online extraction, clean‐up and separation system for the determination of betaine, l ‐carnitine and choline in human urine using column‐switching ion chromatography with nonsuppressed conductivity detection was developed in this work. A self‐packed pretreatment column (50 × 4.6 mm, i.d.) was used for the extraction and clean‐up of betaine, l ‐carnitine and choline. The separation was achieved using self‐packed cationic exchange column (150 × 4.6 mm, i.d.), followed by nonsuppressed conductivity detection. Under optimized experimental conditions, the developed method presented good analytical performance, with excellent linearity in the range of 0.60–100 μg mL−1 for betaine, 0.75–100 μg mL−1 for l ‐carnitine and 0.50–100 μg mL−1 for choline, with all correlation coefficients (R2) >0.99 in urine. The limits of detection were 0.15 μg mL−1 for betaine, 0.20 μg mL−1 for l ‐carnitine and 0.09 μg mL−1 for choline. The intra‐ and inter‐day accuracy and precision for all quality controls were within ±10.32 and ±9.05%, respectively. Satisfactory recovery was observed between 92.8 and 102.0%. The validated method was successfully applied to the detection of urinary samples from 10 healthy people. The values detected in human urine using the proposed method showed good agreement with the measurement reported previously.  相似文献   

16.
A retention‐time‐shift‐tolerant background subtraction and noise reduction algorithm (BgS‐NoRA) is implemented using the statistical programming language R to remove non‐drug‐related ion signals from accurate mass liquid chromatography/mass spectrometry (LC/MS) data. The background‐subtraction part of the algorithm is similar to a previously published procedure (Zhang H and Yang Y. J. Mass Spectrom. 2008, 43: 1181–1190). The noise reduction algorithm (NoRA) is an add‐on feature to help further clean up the residual matrix ion noises after background subtraction. It functions by removing ion signals that are not consistent across many adjacent scans. The effectiveness of BgS‐NoRA was examined in biological matrices by spiking blank plasma extract, bile and urine with diclofenac and ibuprofen that have been pre‐metabolized by microsomal incubation. Efficient removal of background ions permitted the detection of drug‐related ions in in vivo samples (plasma, bile, urine and feces) obtained from rats orally dosed with 14C‐loratadine with minimal interference. Results from these experiments demonstrate that BgS‐NoRA is more effective in removing analyte‐unrelated ions than background subtraction alone. NoRA is shown to be particularly effective in the early retention region for urine samples and middle retention region for bile samples, where the matrix ion signals still dominate the total ion chromatograms (TICs) after background subtraction. In most cases, the TICs after BgS‐NoRA are in excellent qualitative correlation to the radiochromatograms. BgS‐NoRA will be a very useful tool in metabolite detection and identification work, especially in first‐in‐human (FIH) studies and multiple dose toxicology studies where non‐radio‐labeled drugs are administered. Data from these types of studies are critical to meet the latest FDA guidance on Metabolite in Safety Testing (MIST). Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
Malondialdehyde has been used as a biomarker for lipid peroxidation in biological samples. An ultra‐high performance liquid chromatography with tandem mass spectrometry method was developed to determine the levels of malondialdehyde in human urine and saliva samples. To select the optimum derivatization reagent from four diamino compounds, the reactivity and sensitivity of their derivatives were compared, and 3,4‐diaminobenzophenone was selected. The optimum reaction conditions for malondialdehyde with 3,4‐diaminobenzophenone were as follows: a reagent dosage of 50 mg/L, pH of 4, and reaction for 30 min at 50°C. The formed derivative product was analyzed using ultra‐high performance liquid chromatography with tandem mass spectrometry without additional extraction or concentration steps. In the optimal conditions, the method was used to determine malondialdehyde concentration in human urine and saliva samples. The limits of quantification for malondialdehyde in biological samples were over a concentration range of 0.1–0.3 μg/L. Additionally, the calibration curve showed a linearity greater than r = 0.997. The method was used to analyze 14 human urine and saliva samples from healthy volunteers. Malondialdehyde was detected in the concentration range of 1.7–33.6 μg/g creatinine in all human urine samples and 0.1–1.3 μg/L in all human saliva samples.  相似文献   

18.
A new analytical approach, using paper spray tandem mass spectrometry, has been developed for assay of carnitine and acylcarnitines in urine. Paper spray (PS) is a very promising technique, especially in clinical investigations, because of its simplicity, low cost, and rapid sample preparation. A home-made paper spray device was used for assay of urinary acylcarnitines (C2–C18). The performance of solvents with different elution efficiency and paper substrates with different porosity grade and structure were tested by use of spiked synthetic urine. Tandem mass spectrometry in multiple reaction monitoring (MRM) mode was optimized to obtain better specificity and sensitivity. Analyte signals were evaluated for stability and reproducibility. Calibration with [2H3]propionylcarnitine (C3-d3), [2H3]octanoylcarnitine (C8-d3), and [2H3] palmitoylcarnitine (C16-d3) as internal standards was used for quantification. Very good linearity was obtained, with correlation coefficients >0.99 for C0–C12 and C16 acylcarnitines and >0.96 for C14 and C18 acylcarnitines. Accuracy and precision (RSD, %) of the proposed procedure were tested at concentrations of 0.8, 8, and 20 mg L?1 with very satisfactory results: overall mean accuracy was 98.9 % and overall mean relative standard deviation 1 %. Limits of detection (LOD) between 6 and 208 μg L?1 for propionylcarnitine and tetradecanoylcarnitine, respectively, can be regarded as very satisfactory. Application of the method to real urine proved that paper spray tandem mass spectrometry is a simple, rapid, and direct tool (no derivatization is required) for assay of carnitine and C2–C12 acylcarnitines in urine.  相似文献   

19.
In this study, 38 samples of expired air were collected and analyzed from 20 non‐smoking volunteers, four passive smokers and 14 smokers (21 women and 17 men). Measurements were carried out using solid‐phase microextraction (SPME) as an isolation and preconcentration technique. The determination and identification were accomplished by gas chromatography coupled with mass spectrometry (GC/MS). Our data showed that ca 32% of all identified compounds in the breath of healthy non‐smokers were saturated hydrocarbons. In the breath of smoking and passive smoking volunteers hydrocarbons were predominant, but also present were more exogenous analytes such as furan, acetonitrile and benzene than in the breath of non‐smokers. Acetonitrile, furan, 3‐methylfuran, 2,5‐dimethylfuran, 2‐butanone, octane and decane were identified in breath of smoking and passive smoking persons. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
The performances of gas chromatography with mass spectrometry and of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution–alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity‐exposed samples. Examination of the results confirmed the outperformance of comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in Dmagna samples. The peak areas of multivariate curve resolution–alternating least squares resolved elution profiles in every sample analyzed by comprehensive two‐dimensional gas chromatography with time‐of‐flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt‐exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de‐regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号