首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The eight stereoisomers of limonene‐based carbocyclic β‐amino acids containing three chiral centers have been directly separated on chiral stationary phases containing Cinchona alkaloid‐based zwitterionic selectors. The effects of bulk solvent composition of the mobile phase, the nature of base additives, counterion concentration, and the structure of selector on the enantiorecognition were studied. Experiments were performed at constant mobile phase composition in the temperature range 5–40°C to study the effect of temperature. Thermodynamic parameters were calculated on the basis of the plots of ln α versus 1/T curves. The enthalpically or entropically driven enantioseparations were found to depend strongly on the structures of analyte and selector. The eight stereoisomers of limonene‐based carbocyclic β‐amino acids could be differentiated as well‐separated peaks in a traditional 1D chromatographic system in two runs by applying the two complementary ZWIX(+)™ and ZWIX(–)™ columns.  相似文献   

2.
The enantiomeric pairs of cis and trans stereoisomers of cyclic β‐aminohydroxamic acids and their related cis and trans cyclic β‐amino acids containing two chiral centers were directly separated on four structurally related chiral stationary phases derived from quinine and quinidine modified with (R,R)‐ and (S,S)‐aminocyclohexanesulfonic acids. Applying these zwitterionic ion‐exchangers as chiral selectors, the effects of the composition of the bulk solvent, the acid and base additives, the structures of the analytes, and temperature on the enantioresolution were investigated. To study the effects of temperature and obtain thermodynamic parameters, experiments were carried out at constant mobile phase compositions in the temperature range 5–50°C. The differences in the changes in standard enthalpy Δ(ΔH°), entropy Δ(ΔS°), and free energy Δ(ΔG°) were calculated from the linear van't Hoff plots derived from the ln α versus 1/T curves in the studied temperature range. Results thus obtained indicated enthalpy‐driven separations in all cases. The sequence of elution of the enantiomers was determined and found to be reversed when ZWIX(–)™ was changed to ZWIX(+)™ or ZWIX(–A) to ZWIX(+A).  相似文献   

3.
4.
Stereoselective HPLC separations of five sterically constrained monoterpene‐based 2‐aminocarboxylic acid enantiomers were carried out by using the newly developed zwitterionic chiral stationary phases Chiralpak ZWIX(+)? and ZWIX(?)? based on Cinchona alkaloid. In order to optimize the retention and enantioselectivity parameters, the ratio of the different organic solvents in the mobile phase and the nature of the acid and base additives (counter‐ and co‐ions) were systematically varied. The effects of structure variants of the analytes on the resolution were investigated. The elution sequence was determined in all cases and observed to be opposite on ZWIX(+)? and ZWIX(?)?.  相似文献   

5.
We report a chiral high-performance liquid chromatographic enantioseparation method for free α-aminophosphonic, β-aminophosphonic, and γ-aminophosphonic acids, aminohydroxyphosphonic acids, and aromatic aminophosphinic acids with different substitution patterns. Enantioseparation of these synthons was achieved by means of high-performance liquid chromatography on CHIRALPAK ZWIX(+) and ZWIX(-) (cinchona-based chiral zwitterionic ion exchangers) under polar organic chromatographic elution conditions. Mobile phase characteristics such as acid-to-base ratio, type of counterion, and solvent composition were systematically varied in order to investigate their effect on the separation performance and to achieve optimal separation conditions for the set of analytes. Under the optimized conditions, 32 of 37 racemic aminophosphonic acids studied reached baseline separation when we employed a single generic mass-spectrometry-compatible mobile phase, with reversal of the elution order when we used (+) and (-) versions of the chiral stationary phase.
Figure
New zwitterionic ion-exchangers can separate free amino phosphonic acids and a change from Chiralpak ZWIX(+) to ZWIX(-) allows reversal of enantiomer elution order  相似文献   

6.
The liquid chromatographic enantiomer separation of N-fluorenylmethoxycarbonyl (FMOC) protected alpha-amino acids and their ethyl ester derivatives was performed on polysaccharide-derived chiral stationary phases, Chiralcel OD, Chiralpak AD, and Chiralpak AS. In general, Chiralcel OD and Chiralpak AD showed good performance for resolution of N-FMOC alpha-amino acids and their ethyl esters, respectively. All investigated N-FMOC alpha-amino acid enantiomers were baseline separated on Chiralcel OD or Chiralpak AD, whereas N-FMOC alpha-amino acid ethyl ester enantiomers were baseline resolved (alpha = 1.15-3.03) on Chiralpak AD, except for two analytes. The L-enantiomers of all examined FMOC alpha-amino acid ethyl ester derivatives are preferentially retained on Chiralpak AD, while the elution orders of the other enantiomer separations are not consistent.  相似文献   

7.
《Tetrahedron: Asymmetry》2005,16(4):801-807
Chiral recognition by positive ion electrospray ionization (ESI) mass spectrometry is demonstrated through the adaptation of chromatographically derived chiral recognition systems. Solutions of soluble analogues of chiral selectors used in Pirkle-type chiral stationary phases, when mixed with a chiral analyte, whose enantiomers are known to be resolved on the analogous chiral stationary phase, are shown to afford selector–analyte complexes in the mass spectrum. Pseudo-enantiomeric chiral selectors, where each pseudo-enantiomer has a different mass and a higher affinity for the opposite analyte enantiomer of its pseudo-antipode, were prepared. When mixed with a chiral analyte, solutions of these pseudo-enantiomeric selectors afford selector–analyte complexes in the ESI-mass spectrum where the relative intensities of the selector–analyte complexes are dependent on the enantiomeric composition of the analyte. Additionally, the sense of the observed chiral recognition is in agreement with the sense of chiral recognition observed chromatographically.  相似文献   

8.
Amino acids are unique in terms of their structural features and multidimensional uses. With their simple structures and the ready availability of both enantiomers, amino acids not only serve as a chiral pool for synthesis but also provide an inexpensive pool for resolution studies. There has been no attempt to review the application of amino acids as chiral selectors for chromatographic enantioresolution of pharmaceuticals and other compounds. The present paper deals with application of l-amino acids and complexes of l-amino acids with a metal ion, particularly Cu(II), as an impregnating reagent in thin-layer chromatography or as a chiral ligand exchange reagent or a chiral mobile phase additive in both thin-layer chromatography and high-performance liquid chromatography. Enantiomeric resolution of β-blockers, nonsteroidal anti-inflammatories, amino acids (and their derivatives) and certain other compounds is discussed.  相似文献   

9.
The search for new and effective chiral selectors capable of separating a wide variety of enantiomeric compounds is an ongoing process. In the past decade, macrocyclic antibiotics have proved to be an exceptionally useful class of chiral selectors for the separation of enantiomers of biological and pharmacological importance by means of HPLC, TLC and electrophoresis. More chiral analytes have been resolved through the use of glycopeptides than with all the other macrocyclic antibiotics combined (ansamycins, thiostrepton, aminoglycosides, etc.). The glycopeptides avoparcin, teicoplanin, ristocetin A and vancomycin have been extensively used as chiral selectors in the form of chiral bonded phases in HPLC, and HPLC stationary phases based on these glycopeptides have been commercialized. Teicoplanin, vancomycin, their analogs and ristocetin A seem to be the most useful glycopeptide HPLC bonded phases for the enantioseparation of proteins and unusal native and derivatized amino acids. In fact, the macrocyclic glycopeptides are to some extent complementary to one another: where partial enantioresolution is obtained with one glycopeptide, there is a high probability that baseline or better separation can be obtained with another. This review sets out to characterize the physicochemical properties of these antibiotics and their application in the enantioseparations of amino acids. The mechanism of separation, the sequence of elution of the stereoisomers and the relation to the absolute configuration are also discussed.  相似文献   

10.
Chiral ligand‐exchange chromatography is one of the elective strategies for the direct enantioresolution of small chelating compounds: amino acids, diamines, amino alcohols, diols, small peptides, etc. Unlike other methods, the interaction between chiral selector and analyte enantiomers is mediated by a cation, thus producing diastereomeric ternary complexes. Two main approaches are conventionally applied in chiral ligand‐exchange chromatography. The first relies upon chiral stationary phases where the chiral selector is either covalently immobilized or physically adsorbed onto suitable packing materials (coated phases). In the second approach, chiral molecules are added to the eluent, thus generating chiral eluent systems. Among the advantages of chiral ligand‐exchange chromatography, the generation of UV/vis‐active metal complexes, and the use of commercially available or easy‐to‐synthesize chiral selectors, in combination to rather inexpensive achiral columns for coated phases and chiral eluents, are noteworthy. Besides amino acids and amino alcohols, other species have proven suitable for chiral ligand‐exchange chromatography applications. Recently, the use of either chiral ionic liquids or micellar liquid chromatography systems as well as the successful off‐column formation of diastereomeric complexes have expanded the selectivity profiles and application fields. All of these issues are touched in the review, shedding light to the contributions appeared in the last decade.  相似文献   

11.
The intramolecular distances of anion and cation exchanger sites of zwitterionic chiral stationary phases represent potential tuning sites for enantiomer selectivity. In this contribution, we investigate the influence of alkanesulfonic acid chain length and flexibility on enantiomer separations of chiral acids, bases, and amphoteric molecules for six Cinchona alkaloid-based chiral stationary phases in comparison with structurally related anion and cation exchangers. Employing polar-organic elution conditions, we observed an intramolecular counterion effect for acidic analytes which led to reduced retention times but did not impair enantiomer selectivities. Retention of amphoteric analytes is based on simultaneous double ion pairing of their charged functional groups with the acidic and basic sites of the zwitterionic selectors. A chiral center in the vicinity of the strong cation exchanger site is vital for chiral separations of bases. Sterically demanding side chains are beneficial for separations of free amino acids. Enantioseparations of free (un-derivatized) peptides were particularly successful in stationary phases with straight-chain alkanesulfonic acid sites, pointing to a beneficial influence of more flexible moieties. In addition, we observed pseudo-enantiomeric behavior of quinine and quinidine-derived chiral stationary phases facilitating reversal of elution orders for all analytes.  相似文献   

12.
To improve the chiral recognition capability of a cinchona alkaloid crown ether chiral stationary phase, the crown ether moiety was modified by the chiral group of (1S, 2S)‐2‐aminocyclohexyl phenylcarbamate. Both quinine and quinidine‐based stationary phases were evaluated by chiral acids, chiral primary amines and amino acids. The quinine/quinidine and crown ether provided ion‐exchange sites and complex interaction site for carboxyl group and primary amine group in amino acids, respectively, which were necessary for the chiral discrimination of amino acid enantiomers. The introduction of the chiral group greatly improved the chiral recognition for chiral primary amines. The structure of crown ether moiety was proved to play a dominant role in the chiral recognitions for chiral primary amines and amino acids.  相似文献   

13.
Sodium cholate (SC), β‐CD, hydroxypropyl (HP)‐β‐CD, HSA, and the dual mixtures of them were evaluated for the analysis of aspartic acid (Asp) and glutamic acid (Glu) enantiomers fluorescently tagged with 5‐(4,6‐dichloro‐s‐triazin‐2‐ylamino) fluorescein (DTAF) by CE with LIF detection. Among the investigated chiral selectors and the dual selector systems, the dual selector systems of HSA and SC resulted to be the most useful chiral selectors allowing relatively high chiral resolution. Several experimental parameters such as chiral reagent type and concentration, buffer concentration, and pH, type and concentration of organic modifier were studied in order to find the optimum conditions for the chiral resolution of the two derivatized amino acids in their enantiomers. The effect of different variables that affect derivatization (time, temperature, pH, and DTAF concentration) was studied. Under optimum conditions, the analytes were separated in a short 10.5 min analysis time, and the RSDs for migration time and peak area were less than 0.12 and 2.8%, respectively. The method was applied for the analysis of compound amino acids injection without interference from other amino acids in the sample matrices observed.  相似文献   

14.
Ghanem A  Hoenen H  Aboul-Enein HY 《Talanta》2006,68(3):602-609
A direct liquid chromatographic enantioselective separation of a set of β-blocker enantiomers on the new immobilized and conventional coated amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) was studied using methanol as mobile phase and ethanolamine as an organic modifier (100:0.1, v/v). The separation, retention and elution order of the enantiomers on both columns under the same conditions were compared. The effect of the immobilization of the amylose tris-(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted when compared to the coated phase (Chiralpak AD) which possesses a higher resolving power than the immobilized one (Chiralpak IA). A few racemates, which were not or poorly resolved on the immobilized Chiralpak IA were most efficiently resolved on the coated Chiralpak AD. However, the immobilized phase withstand solvents like dichloromethane when used as an eluent or as a dissolving agent for the analyte. The versatility of the immobilized Chiralpak IA in monitoring reactions performed in dichloromethane using direct analysis techniques without further purification, workup or removal of dichloromethane was studied on a representative example consisting of the lipase-catalyzed irreversible transesterification of a β-blocker using either vinylacetate or isopropenyl acetate as acyl donor in dichloromethane as organic solvent.  相似文献   

15.
Ro KW  Hahn JH 《Electrophoresis》2005,26(24):4767-4773
Precolumn derivatization and chiral separation of DL-amino acids based on diastereomerization have been performed on an integrated poly(dimethylsiloxane) microchip. Diastereomeric derivatives were formed in a microfabricated precolumn reactor by the reaction of amino acid enantiomers with o-phthaldialdehyde/2,3,4,6-tetra-O-acetyl-1-thio-beta-D-glucopyranose (OPA/TATG), and separated by MEKC in an achiral environment without chiral selectors in the running buffer. Optimized precolumn reactions and chiral separations of amino acids were achieved within 2.5 min. Resolutions of diastereomers of OPA/TATG-amino acids were in the range of 2.5-6.1 at optimized separation conditions. Simultaneous separation of a mixture of five chiral amino acids was successfully performed in a single run in less than 100 s.  相似文献   

16.
Direct separation of the enantiomers of amino acid amines, amino alcohols, and diamines was performed on recently developed chiral stationary phases containing isopropyl carbamate-cyclofructan 6 (IP-CF6), (R)-naphthylethylcarbamate cyclofructan 6 (RN-CF6), or dimethylphenylcarbamate cyclofructan 7 (DMP-CF7) as chiral selectors, using n-hexane/alcohol/TFA as mobile phase. The effects of the mobile phase composition, the nature and concentrations of the alcoholic and acidic modifiers, and the structures of the analytes on the retention and resolution were investigated. In some cases, separations were carried out at constant mobile phase composition in the temperature range 5-40 °C. Thermodynamic parameters and T(iso) values were calculated from plots of lnk versus 1/T. It was found that the enantioseparations were enthalpy driven. The sequences of elution of the stereoisomers were determined but no general rule could be established.  相似文献   

17.
The separation of the enantiomers of 17 chiral sulfoxides was studied on polysaccharide‐based chiral columns in polar organic mobile phases. Enantiomer elution order (EEO) was the primary objective in this study. Two of the six chiral columns, especially those based on amylose tris(3,5‐dimethylphenylcarbamate) and cellulose tris(4‐chloro‐3‐methylphenylcarbamate) (Lux Cellulose‐4) proved to be most successful in the separation of the enantiomers of the studied sulfoxides. Interesting examples of EEO reversal were observed depending on the chiral selector or the composition of the mobile phase. For instance, the R‐(+) enantiomer of lansoprazole eluted before the S‐(?) enantiomer on Lux Cellulose‐1 in both methanol or ethanol as the mobile phase, while the elution order was opposite in the same eluents on amylose tris(3,5‐dimethylphenylcarbamate) with the S‐(?) enantiomer eluting before the R‐(+) enantiomer. The R‐(+) enantiomer of omeprazole eluted first on Lux Amylose‐2 in methanol but it was second when acetonitrile was used as the mobile phase with the same chiral selector. Several other examples of reversal in EEO were observed in this study. An interesting example of the separation of four stereoisomers of phenaminophos sulfoxide containing chiral sulfur and phosphor atoms is also reported here.  相似文献   

18.
High-performance liquid chromatographic (HPLC) separation of stereoisomeric cyclic beta-substituted alpha-quaternary alpha-amino acids was performed by ligand-exchange on a copper(II)-D-penicillamine chiral stationary phase. The investigated amino acids are the 1-amino-2-methylcyclohexanecarboxylic acids, the 1-amino-2-hydroxycyclohexanecarboxylic acids, the 1-amino-2-methylcyclopentanecarboxylic acids and the trans-configured 1,2-diaminocyclohexanecarboxylic acids. The effects of the mobile phase composition (copper(II) concentration, type and content of organic modifier, pH) and the temperature on the enantio- and diastereoselectivity were studied and the conditions were optimised to resolve the four stereoisomers of each of the said amino acids in single chromatographic runs. A reversal of the elution order occurred for enantiomers of some of the amino acids in dependence on the acetonitrile content of the eluent. This phenomenon is explained by at least two different copper(II) complexes of the tridentate ligand penicillamine.  相似文献   

19.
The separation of the stereoisomers of 23 chiral basic agrochemicals was studied on six different polysaccharide‐based chiral columns in high‐performance liquid chromatography with various polar organic mobile phases. Along with the successful separation of analyte stereoisomers, emphasis was placed on the effect of the chiral selector and mobile phase composition on the elution order of stereoisomers. The interesting phenomenon of reversal of enantiomer/stereoisomer elution order function of the polysaccharide backbone (cellulose or amylose), type of derivative (carbamate or benzoate), nature, and position of the substituent(s) in the phenylcarbamate moiety (methyl or chloro) and the nature of the mobile phase was observed. For several of the analytes containing two chiral centers all four stereoisomers were resolved with at least one chiral selector/mobile phase combination.  相似文献   

20.
trans-(-)-Paroxetine is a selective 5-hydroxytryptamine (5-HT) reuptake inhibitor currently used as an antidepressant. trans-(+/-)-3-Ethoxycarbonyl-4-(4'-fluorophenyl)-1-methylpiperidine-2,6-dione is an important intermediate of trans-(-)-paroxetine. It was separated on amylose and tartaric acid-based chiral stationary phases by HPLC. The equilibrium constants and overall mass transfer coefficients together with the axial dispersion coefficients were experimentally determined by moment analysis based on the lumped kinetic model of chromatography. In case of Kromasil CHI-TBB, the equilibrium constants measured were found to be 8.36 and 9.37 for trans-(+) and trans-(-) enantiomers, respectively. For Chiralpak AD-H, the equilibrium constants were 6.68 and 4.13 for trans-(+) and trans-(-) enantiomers, respectively. The axial dispersion coefficients of both enantiomers on Kromasil CHI-TBB column were about one order of magnitude greater than on Chiralpak AD-H. Fast kinetics of mass transfer in both chiral stationary phases was observed. Their overall mass transfer coefficients on Kromasil CHI-TBB and Chiralpak AD-H were 32.12, 33.18, 26.50, 46.85 s(-1) for trans-(+) and trans-(-) enantiomers, respectively. The parameters obtained were utilized to simulate the elution profiles, and the simulated and experimental results match well, which confirmed that the parameters obtained in this study were valid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号