首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 3 毫秒
1.
Three novel chiral stationary phases (CSPs) were prepared by regioselective chemical immobilization of mono(6A-N-allylamino-6A-deoxy)perphenylcarbamoylated (PICD) α-, β-, and γ-cyclodextrins (CDs) onto silica support via hydrosilylation. Their enantioseparation properties in high performance liquid chromatography (HPLC) were evaluated with a large spectrum of racemates including flavanone compounds, β-adrenergic blockers, amines and non-protolytic compounds. The effect of CD's cavity size on enantioseparation abilities was studied and discussed. The results indicated that CD's surface loading at silica support played an important role in the enantioseparation on these CSPs under normal-phase conditions while inclusion phenomena contributed the major driving force under reverse-phase conditions. As expected, α-PICD demonstrated the best resolutions towards flavonone and most aromatic alcohols under normal-phase conditions with the highest surface loading; while Fujimura's competitive inclusion model can be applied to explain the better enantioseparations towards β-adrenergic blockers, amines and non-protolytic compounds with α- and β-PICD CSPs. γ-PICD CSP showed superior enantioseparation ability for sterically encumbered analytes like flavanone compounds under both normal-phase and reversed phase conditions.  相似文献   

2.
Analytical HPLC methods using derivatized cellulose chiral stationary phases were developed for the direct enantioseparation of substituted [1-(imidazo-1-yl)-1-phenylmethyl)]-benzothiazolinone and benzoxazolinone derivatives with one chiral center. Those analogues of fadrozole constitute new potent nonsteroidal inhibitors of aromatase (P450 arom). The separations were made using normal phase methodology with a mobile phase consisting of n-hexane-alcohol (ethanol, 1-propanol, or 2-propanol) in various proportions, and a silica-based cellulose tris-3,5-dimethylphenylcarbamate (Chiralcel OD-H), or tris-methylbenzoate (Chiralcel OJ). The effects of concentration of various aliphatic alcohols in the mobile phase were studied. A better separation was achieved on cellulose carbamate phase compared with the cellulose ester phase. The effects of structural features of the solutes along with the temperature of the column on the discrimination between the enantiomers were examined. Baseline separation (Rs > 1.5) was easily obtained in many cases.  相似文献   

3.
Three novel chiral selectors 4a-c were synthesized from(S)-amino acids and(R)-1-phenyl-2-(4-methylphenyl)ethylamine.4a-cwere connected to 3-aminopropylsilanized silica gel to be used as the chiral stationary phase for HPLC.Five amino acid derivativesand two pyrethroid insecticides were fairly resolved on these three new chiral stationary phases under normal phase condition.  相似文献   

4.
In this study, two polyproline‐derived chiral selectors are bonded to monolithic silica gel columns. In spite of high chiral selector coverage, the derivatization was found to have only a slight effect on the hydrodynamics of the mobile phase through the column. The enantioseparation ability of the resulting chiral monolithic columns was evaluated with a series of structurally diverse racemic test compounds. When compared to analogous bead‐based chiral stationary phases, higher enantioseparation and broader application domain were observed for monolithic columns. Moreover, the increase in flow rate produces a minor reduction of resolution, which permits to shorten analysis time. Additionally, increased loadability defines chiral polyproline derived monoliths as adequate for preparative chromatography.  相似文献   

5.
Two cyclodextrin-based chiral stationary phases have been prepared by immobilization of functionalized mono-6-azido-β-CD derivatives to alkynyl modified silica via “click” chemistry and applied to the HPLC enantioseparation of various chiral compounds. The perphenylcarbamated CD CSP (CCP-CSP) exhibited excellent chiral recognition of a wide range of analytes including racemic aryl alcohols, flavonoids, bendroflumethiazide, atropine and some β-blockers. Methanol proved to be a better organic modifier than acetonitrile for most of the analytes with the exception of bendroflumethiazide. The “click” chemistry immobilized permethylated CD CSP (CCM-CSP) afforded poor chiral recognition for most analytes, but could resolve non-aromatic ionone derivatives which were not separated on CCP-CSP. These results suggest that resolution with cyclodextrin derived CSPs depend on a complex interplay of ‘host’–‘guest’ inclusion, hydrogen bonding, π–π and hydrophobic interactions.  相似文献   

6.
Two novel chiral stationary phases (CSPs) were prepared by bonding chiral imidazoliums on the surface of silica gel. The chiral imidazoles were derivatized from chiral amines, 1-phenylethylamine and 1-(1-naphthyl)ethylamine. The obtained CSPs were characterized by Fourier Transform Infrared (FT-IR) spectroscopy and elemental analysis (EA), demonstrating the bonding densities of CSP 1 and CSP 2 were 0.43 mmol g−1 and 0.40 mmol g−1, respectively. These two CSPs could be used to availably separate 8 pharmaceuticals, 7 mandelic acid/its derivatives, 2 1-phenylethylamine derivatives, 1 1,1′-bi-2-naphthol, and 1 camphorsulfonic acid in high-performance liquid chromatography (HPLC). It is found that CSP 1 could effectively enantioseparate most chiral analytes, especially the acidic components, while CSP 2 could enantiorecognize all chiral analytes, although a number of components did not achieve baseline separation. Additionally, the effects of mobile phase composition, mobile phase pH and salt content, chiral selector structures, and analyte structures on the enantiorecognitions of the two CSPs were investigated. It is found that high acetonitrile content in mobile phases was conducive to enantiorecognition. Mobile phase pH and salt content could alter the retention behaviors of different enantiomers of the same chiral compound, resulting in better enantioresolution. Moreover, both chiral selector structures and substituted groups of analytes played a significant role in the separation of chiral solutes.  相似文献   

7.
Two covalently bonded cationic β-CD chiral stationary phases (CSPs) prepared by graft polymerization of 6A-(3-vinylimidazolium)-6-deoxyperphenylcarbamate-β-cyclodextrin chloride or 6A-(N,N-allylmethylammonium)-6-deoxyperphenylcarbamoyl-β-cyclodextrin chloride onto silica gel were successfully applied in high-performance liquid chromatography (HPLC). Their enantioseparation capability was examined with 12 racemic pharmaceuticals and 6 carboxylic acids. The results indicated that imidazolium-containing β-CD CSP afforded more favorable enantioseparations than that containing ammonium moiety under normal-phase HPLC. The cationic moiety on β-CD CSPs could form strong hydrogen bonding with analytes in normal-phase liquid chromatography (NPLC) to enhance the analytes’ retention and enantioseparations. In reversed-phase liquid chromatography (RPLC), the analytes exhibited their maximum retention when the pH of mobile phase was close to their pKa value. Inclusion complexation with CD cavity and columbic/ionic interactions with cationic substituent on the CD rim would afford accentuated retention and enantioseparations of the analytes.  相似文献   

8.
For the first time, three different derivatized cyclofructan chiral stationary phases were used for the direct high‐performance liquid chromatographic enantiomeric separation of 11 new racemic analogs of a natural indole phytoalexin. This class of compounds is known to have significant antiproliferative activity and other potentially useful pharmacological properties. The effect of various experimental factors was investigated to optimize the separations in the normal‐phase mode. It was found that the nature of polar modifier and additive in the mobile phase have significant impact on the enantioseparations. Better chiral recognition of analyzed compounds was achieved on (R)‐naphthylethyl carbamate cyclofructan 6 than on isopropyl carbamate cyclofructan 6 and dimethylphenyl carbamate cyclofructan 7. The thermodynamic parameters showed that the chiral separation was enthalpy controlled in all cases.  相似文献   

9.
Chiral stationary phases were synthesized and their ability to separate racemic precursors from which they were derived was assessed. Taken in conjunction with homochiral recognition previously observed in the solid state, the results of this study reveal that a geometrically controlling π-π interaction has a profound influence on molecular recognition.  相似文献   

10.
High-performance liquid chromatography enantioseparation of vesamicol and six novel azaspirovesamicols (amino alcohols) was accomplished on different chiral stationary phases (CSPs) by using an optical rotation based chiral detector for identification of the resolved enantiomers. The Pirkle-type column Reprosil Chiral-NR was found to be most suitable for chiral resolution in normal phase (NP) mode; all compounds could be enantioseparated successfully. Also the cellulose-based column Reprosil Chiral-OM showed appropriate separation properties by using NP conditions. The amylose-type column Reprosil Chiral-AM-RP was most suitable for enantioseparation in reversed phase (RP) mode; five out of seven compounds were resolved. This CSP showed a considerably higher capability for chiral recognition of vesamicol derivatives in RP mode than the corresponding cellulose-based column Reprosil Chiral-OM-RP. Enantioseparation with the teicoplanin aglycone-based column Reprosil Chiral-AA was successful under polar ionic mobile phase conditions.  相似文献   

11.
Polysaccharide‐based chiral stationary phases can be used for the enantioselective separation of a wide range of structurally different compounds. These phases are available with chiral selectors coated or immobilized on silica gel support. The means of attachment of the chiral selector to the carrier can influence the separation performance of these stationary phases. This paper deals with evaluation of differences in the separation abilities of coated Chiralpak AD‐RH versus immobilized Chiralpak IA amylose‐based stationary phases in the reversed–phase mode of high–performance liquid chromatography. A set of chiral analytes was separated under acidic and basic conditions. Differences were observed in the enantioseparation potential of the tested phases. The linear‐free energy relationship and additional evaluation of ionic interactions were used to ascertain whether the interactions that participate in retention and enantioseparation are affected by the means of preparation of these phases. All the interactions covered by the linear‐free energy relationship were significant for the studied phases and their absolute values were almost always higher for the coated phase. Ionic interactions were found to be more important on the immobilized stationary phase but did not contribute to any improvement in the enantioselective separation performance.  相似文献   

12.
Summary Two improved methods for the enantiomeric separation of racemic aminoglutethimide (±AG) and its acetylated metabolite (±AAG) have been developed. Direct liquid chromatographic resolution of the enantiomers of aminoglutethimide and its acetylated metabolite was accomplished using Chiralcel OD and Chiralcel OJ columns without any derivatization. Maximum resolution of 8.87 and 2.23 was obtained for the enantiomers of aminoglutethimide and its acetylated metabolite using a Chiralcel OD column, while maximum resolution of 10.34 and 7.01 was obtained for the enantiomers using a Chiralcel OJ column. Optimization of separation was obtained using different concentration of 2-propanol in hexane as a mobile phase.  相似文献   

13.
手性固定相(chiral stationary phase,CSP)作为手性色谱分离的核心技术,在手性化合物的识别和分离中得到广泛应用。以双手性选择单元结合作为CSP是近些年的研究热点,研究表明,两种手性选择单元相结合的CSP可增加手性识别位点,显著提高分离效果。本文介绍了近几年双手性选择单元手性固定相在手性分离中的研究进展,并对其发展前景进行了展望。  相似文献   

14.
Two hybrid polyacrylamide chiral stationary phases (CSPs) for HPLC have been synthesized by a new surface-initiated photo-induced radical polymerization approach of enantiopure N,N'-diacryloyl derivatives of (1R,2R)-diaminocyclohexane (CSP1) and (1R,2R)-diphenylethylenediamine (CSP2). This system is based on the activation of mesoporous silica microparticles by chemically bonded trichloroacetyl groups and dimanganese decacarbonyl as catalyst. UV irradiation was performed using a lab-made quartz photochemical reactor, ad hoc designed for the photo-induced polymerization process on the surface of microparticles. The two phases were evaluated and compared as chromatographic supports for the enantioselective HPLC of model chiral compounds. Their physico-chemical properties and chromatographic performances were also evaluated in comparison with those exhibited by the homologue CSPs obtained by the grafting-from thermal-induced process (CSP3 and CSP4). The new photopolymerization approach yielded higher grafting density than the thermal-induced one, especially in the case of the less reactive monomer (the diacryloyl derivative of (1R,2R)-diphenylethylenediamine), good chromatographic efficiency and a broad application field under normal phase and polar organic mode conditions.  相似文献   

15.
In this study, the chiral stationary phase was prepared by bonding vancomycin to 5 microm spherical silica gel according to "one-pot" synthetic strategies, and used to separate the enantiomers of zolmitriptan under polar ionic mode. The influences of mobile phase composition, such as the concentration and ratio of glacial acetic acid (HOAc) and triethylamine (TEA), on the enantioseparation were investigated, and the chiral recognition mechanism is discussed. It was found experimentally that the retention factors were increased with the increase of the HOAc/TEA concentration in a certain extent, and the ionic interactions, hydrogen bondings, and steric interactions may play key role together. The method is suitable for baseline separation of zolmitriptan enantiomers.  相似文献   

16.
Summary The reversed phase chromatographic properties of the [G1]-L-glutamic and ethyl ester-AC-silica (1), [G2]-L-glutamic acid ethyl ester-AC-silica (2) and the [G1]-L-glutamic acidt-butyl ester-AC-silica (3) dendrimer stationary phases were evaluated. Initial studies involved the comparison between these phases with a classic reversed phase (i.e. ODS1) by the separation of a standard reversed phase test mixture composed of dimethylphthalate, nitrobenzene, anisole, diphenylamine and fluorene. Separations were achieved with comparable performance to those obtained with the conventional reversed phase (ODS1). However, it was apparent that the chromatographic selectivity exhibited by the dendrimer stationary phases was different from that of the ODS1 phase. On a per mole basis, the dendrimers exhibited similar (and sometimes greater) affinity for these analytes compared with the ODS1 ligand. Subsequent chromatographic experiments were conducted upon the dendrimer chiral stationary phases using chiral analytes under reversed phase and normal phase conditions. Chiral resolution was not observed.  相似文献   

17.
《Electrophoresis》2018,39(16):2107-2116
Immobilized polysaccharide‐based columns showed excellent enantioselectivity in normal phase separation mode. In this work, enantioseparation abilities of four immobilized polysaccharide‐derived chiral stationary phases (Chiralpak IA, Chiralpak IB, Chiralpak IC, and Chiralpak ID) toward 15 azole compounds were evaluated. Separation was carried out using n‐hexane as mobile phase with ethanol, 1‐propanol, 1‐butanol, and 2‐propanol as modifiers. And twelve compounds have achieved baseline separation with the resolutions ranging between 2.05 and 21.73. The enantioseparation on the four polysaccharide‐based chiral columns using different alcohol modifiers was compared. In general, the best separation performance was identified as Chiralpak IC, which was able to resolve 11 compounds to baseline and two partially under the screening conditions. Separation on Chiralpak IB was not satisfactory, because only four compounds were baseline separated.  相似文献   

18.
The separation of enantiomers by chromatographic methods, such as gas chromatography, high‐performance liquid chromatography and capillary electrochromatography, has become an increasingly significant challenge over the past few decades due to the demand of pharmaceutical, agrochemical, and food analysis. Among these chromatographic resolution methods, high‐performance liquid chromatography based on chiral stationary phases has become the most popular and effective method used for the analytical and preparative separation of optically active compounds. This review mainly focuses on the recent development trends for novel chiral stationary phases based on chitosan derivatives, cyclofructan derivatives, and chiral porous materials that include metal‐organic frameworks and covalent organic frameworks in high‐performance liquid chromatography. The enantioseparation performance and chiral recognition mechanisms of these newly developed chiral selectors toward enantiomers are discussed in detail.  相似文献   

19.
cis‐Itraconazole is a chiral antifungal drug administered as a racemate. The knowledge of properties of individual cis‐itraconazole stereoisomers is vital information for medicine and biosciences as different stereoisomers of cis‐itraconazole may possess different affinity to certain biological pathways in the human body. For this purpose, either chiral synthesis of enantiomers or chiral separation of racemate can be used. This paper presents a two‐step high‐performance liquid chromatography approach for the semipreparative isolation of four stereoisomers (two enantiomeric pairs) of itraconazole using polysaccharide stationary phases and volatile organic mobile phases without additives in isocratic mode. The approach used involves the separation of the racemate into three fractions (i.e. two pure stereoisomers and one mixed fraction containing the remaining two stereoisomers) in the first run and consequent separation of the collected mixed fraction in the second one. For this purpose, combination of cellulose tris‐(4‐methylbenzoate) and cellulose tris‐(3,5‐dimehylphenylcarbamate) columns with complementary selectivity for cis‐itraconazole provided full separation of all four stereoisomers (with purity of each isomer > 97%). The stereoisomers were collected, their optical rotation determined and their identity confirmed based on the results of a previously published study. Pure separated stereoisomers are subjected to further biological studies.  相似文献   

20.
In this study, a series of poly(divinylbenzene-alkyl methacrylate) monolithic stationary phases, which were prepared by single step in situ polymerization of divinylbenzene and various alkyl methacrylates (butyl-, octyl-, or lauryl-methacrylate), were developed as separation columns of benzophenone compounds for capillary electrochromatography (CEC). In addition to the presence of plenty of benzene moieties, the stationary phases contained long and flexible alkyl groups on the surface. With an increase in the molecular length of alkyl methacrylate, the polymeric monolith, which had higher hydrophobicity, effectively reduced the peak tailing of benzophenones, but a weaker retention was observed. The unusual phenomenon was likely due to the π–π interaction between the aromatic compound and the polymeric material. The usage of longer alkyl methacrylate as reaction monomer limited the retention of aromatic compounds on the stationary phase surface, thus the π–π interaction between them was possibly reduced. Consequently, the retention time of aromatic compounds was markedly decreased with an increase in carbon length of alkyl methacrylate that was carried on the polymeric monolith. Compared to previous reports on polystyrene-based columns in which the peak-tailing problem was reduced by decreasing the benzene moieties on the stationary phase, this study demonstrated that the undesirable retention (peak-tailing) could also be improved by the inclusion of long alkyl methacrylate to the polystyrene-based columns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号