共查询到20条相似文献,搜索用时 15 毫秒
1.
Preconcentration and determination of ceftazidime in real samples using dispersive liquid–liquid microextraction and high‐performance liquid chromatography with the aid of experimental design 下载免费PDF全文
Rasoul Razmi Behrouz Shahpari Eslam Pourbasheer Mohammad Hasan Boustanifar Zhila Azari Amin Ebadi 《Journal of separation science》2016,39(21):4116-4123
A rapid and simple method for the extraction and preconcentration of ceftazidime in aqueous samples has been developed using dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography analysis. The extraction parameters, such as the volume of extraction solvent and disperser solvent, salt effect, sample volume, centrifuge rate, centrifuge time, extraction time, and temperature in the dispersive liquid–liquid microextraction process, were studied and optimized with the experimental design methods. Firstly, for the preliminary screening of the parameters the taguchi design was used and then, the fractional factorial design was used for significant factors optimization. At the optimum conditions, the calibration curves for ceftazidime indicated good linearity over the range of 0.001–10 μg/mL with correlation coefficients higher than the 0.98, and the limits of detection were 0.13 and 0.17 ng/mL, for water and urine samples, respectively. The proposed method successfully employed to determine ceftazidime in water and urine samples and good agreement between the experimental data and predictive values has been achieved. 相似文献
2.
Ultrasound‐assisted magnetic dispersive solid‐phase microextraction: A novel approach for the rapid and efficient microextraction of naproxen and ibuprofen employing experimental design with high‐performance liquid chromatography 下载免费PDF全文
Mahdi Ghorbani Mahmoud Chamsaz Gholam Hossein Rounaghi 《Journal of separation science》2016,39(6):1082-1089
A simple, rapid, and sensitive method for the determination of naproxen and ibuprofen in complex biological and water matrices (cow milk, human urine, river, and well water samples) has been developed using ultrasound‐assisted magnetic dispersive solid‐phase microextraction. Magnetic ethylendiamine‐functionalized graphene oxide nanocomposite was synthesized and used as a novel adsorbent for the microextraction process and showed great adsorptive ability toward these analytes. Different parameters affecting the microextraction were optimized with the aid of the experimental design approach. A Plackett–Burman screening design was used to study the main variables affecting the microextraction process, and the Box–Behnken optimization design was used to optimize the previously selected variables for extraction of naproxen and ibuprofen. The optimized technique provides good repeatability (relative standard deviations of the intraday precision 3.1 and 3.3, interday precision of 5.6 and 6.1%), linearity (0.1–500 and 0.3–650 ng/mL), low limits of detection (0.03 and 0.1 ng/mL), and a high enrichment factor (168 and 146) for naproxen and ibuprofen, respectively. The proposed method can be successfully applied in routine analysis for determination of naproxen and ibuprofen in cow milk, human urine, and real water samples. 相似文献
3.
Mojtaba Shamsipur Nazir Fattahi Meghdad Pirsaheb Kiomars Sharafi 《Journal of separation science》2012,35(20):2718-2724
Dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography‐ultraviolet detection as a fast and inexpensive technique was applied to the simultaneous extraction and determination of traces of three common herbicides, 2,4‐D, alachlor and atrazine, in aqueous samples. The critical experimental parameters, including type of the extraction and disperser solvents as well as their volumes, sample pH, salt addition, extraction time and centrifuging time, and speed were investigated and optimized. Under the optimum conditions, the calibration graphs found to be linear in the range of 0.3–200 μg/L with limits of detection in the range of 0.05–0.1 μg/L. The relative standard deviations were in the range of 4.5–6.2% (n = 7). The relative recoveries of well, tap, and river water samples which have been spiked with different levels of herbicides were 92.0–107.0, 82.0–104.0, and 82.0–86.0%, respectively. 相似文献
4.
Simultaneous determination of six synthetic phenolic antioxidants in edible oils using dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography with diode array detection 下载免费PDF全文
Shuangjiao Xu Liangliang Liu Yanqin Wang Dayun Zhou Meng Kuang Dan Fang Weihua Yang Shoujun Wei Lei Ma 《Journal of separation science》2016,39(16):3205-3211
A simple, rapid, organic‐solvent‐ and sample‐saving pretreatment technique, called dispersive liquid–liquid microextraction, was developed for the determination of six synthetic phenolic antioxidants from edible oils before high‐performance liquid chromatography with diode array detection. The entire procedure was composed of a two‐step microextraction and a centrifugal process and could be finished in about 5 min, only consuming only 25 mg of sample and 1 mL of the organic solvent for each extraction. The influences of several important parameters on the microextraction efficiency were thoroughly investigated. Recovery assays for oil samples were spiked at three concentration levels, 50, 100 and 200 mg/kg, and provided recoveries in the 86.3–102.5% range with a relative standard deviation below 3.5%. The intra‐day and inter‐day precisions for the analysis were less than 3.8%. The proposed method was successfully applied for the determination of synthetic phenolic antioxidants in different oil samples, and satisfactory results were obtained. Thus, the developed method represents a viable alternative for the quality control of synthetic phenolic antioxidant concentrations in edible oils. 相似文献
5.
Xiao Yang Chun‐Peng Diao Ai‐Ling Sun Ren‐Min Liu 《Journal of separation science》2014,37(19):2745-2750
A method for the rapid pretreatment and determination of bisphenol A in water samples based on vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with fluorescence detection was proposed in this paper. A simple apparatus consisting of a test tube and a cut‐glass dropper was designed and applied to collect the floating extraction drop in liquid–liquid microextraction when low‐density organic solvent was used as the extraction solvent. Solidification and melting steps that were tedious but necessary once the low‐density organic solvent used as extraction solvent could be avoided by using this apparatus. Bisphenol A was selected as model pollutant and vortex‐assisted liquid–liquid microextraction was employed to investigate the usefulness of the apparatus. High‐performance liquid chromatography with fluorescence detection was selected as the analytical tool for the detection of bisphenol A. The linear dynamic range was from 0.10 to 100 μg/L for bisphenol A, with good squared regression coefficient (r2 = 0.9990). The relative standard deviation (n = 7) was 4.7% and the limit of detection was 0.02 μg/L. The proposed method had been applied to the determination of bisphenol A in natural water samples and was shown to be economical, fast, and convenient. 相似文献
6.
Geng Leng Guibin Lui Yong Chen Hui Yin Dezhong Dan 《Journal of separation science》2012,35(20):2796-2804
A simple, rapid, and efficient method, vortex‐assisted extraction followed by dispersive liquid–liquid microextraction (DLLME) has been developed for the extraction of polycyclic aromatic hydrocarbons (PAHs) in sediment samples prior to analysis by high performance liquid chromatography fluorescence detection. Acetonitrile was used as collecting solvent for the extraction of PAHs from sediment by vortex‐assisted extraction. In DLLME, PAHs were rapidly transferred from acetonitrile to dichloromethane. Under the optimum conditions, the method yields a linear calibration curve in the concentration range from 10 to 2100 ng g?1 for fluorene, anthracene, chrysene, benzo[k]fluoranthene, and benzo[a]pyrene, and 20 to 2100 ng g?1 for other target analytes. Coefficients of determinations ranged from 0.9986 to 0.9994. The limits of detection, based on signal‐to‐noise ratio of three, ranged from 2.3 to 6.8 ng g?1. Reproducibility and recoveries was assessed by extracting a series of six independent sediment samples, which were spiked with different concentration levels. Finally, the proposed method was successfully applied in analyses of real nature sediment samples. The proposed method extended and improved the application of DLLME to solid samples, which greatly shorten the extraction time and simplified the extraction process. 相似文献
7.
《Journal of separation science》2017,40(22):4385-4393
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid–liquid microextraction based on the solidification of floating organic drops and determined by high‐performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket–Burman design and Box–Behnken design. The optimized values were: 58 μL of 1‐decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high‐performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0–1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2–0.4 and 0.1–0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples. 相似文献
8.
Simultaneous determination of seven phthalic acid esters in beverages using ultrasound and vortex‐assisted dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography 下载免费PDF全文
Pelin Köseoğlu Yılmaz Abdulselam Ertaş Ufuk Kolak 《Journal of separation science》2014,37(16):2111-2117
A sensitive, rapid, and simple high‐performance liquid chromatography with UV detection method was developed for the simultaneous determination of seven phthalic acid esters (dimethyl phthalate, dipropyl phthalate, di‐n‐butyl phthalate, benzyl butyl phthalate, dicyclohexyl phthalate, di‐(2‐ethylhexyl) phthalate, and di‐n‐octyl phthalate) in several kinds of beverage samples. Ultrasound and vortex‐assisted dispersive liquid–liquid microextraction method was used. The separation was performed using an Intersil ODS‐3 column (C18, 250 × 4.6 mm, 5.0 μm) and a gradient elution with a mobile phase consisting of MeOH/ACN (50:50) and 0.2 M KH2PO4 buffer. Analytes were detected by a UV detector at 230 nm. The developed method was validated in terms of linearity, limit of detection, limit of quantification, repeatability, accuracy, and recovery. Calibration equations and correlation coefficients (> 0.99) were calculated by least squares method with weighting factor. The limit of detection and quantification were in the range of 0.019–0.208 and 0.072–0.483 μg/L. The repeatability and intermediate precision were determined in terms of relative standard deviation to be within 0.03–3.93 and 0.02–4.74%, respectively. The accuracy was found to be in the range of –14.55 to 15.57% in terms of relative error. Seventeen different beverage samples in plastic bottles were successfully analyzed, and ten of them were found to be contaminated by different phthalic acid esters. 相似文献
9.
Ultrapreconcentration and determination of organophosphorus pesticides in water by solid‐phase extraction combined with dispersive liquid–liquid microextraction and high‐performance liquid chromatography 下载免费PDF全文
Junhua Chen Guangming Zhou Yongli Deng Hongmei Cheng Jie Shen Yi Gao Guilong Peng 《Journal of separation science》2016,39(2):272-278
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples. 相似文献
10.
Rui Zhang Chuanliu Wang Qiaohong Yue Tiecheng Zhou Na Li Hanqi Zhang Xiaoke Hao 《Journal of separation science》2014,37(21):3133-3141
An ionic liquid foam floatation coupled with ionic liquid dispersive liquid–liquid microextraction method was proposed for the extraction and concentration of 17‐α‐estradiol, 17‐β‐estradiol‐benzoate, and quinestrol in environmental water samples by high‐performance liquid chromatography with fluorescence detection. 1‐Hexyl‐3‐methylimidazolium tetrafluoroborate was applied as foaming agent in the foam flotation process and dispersive solvent in microextraction. The introduction of the ion‐pairing and salting‐out agent NH4PF6 was beneficial to the improvement of recoveries for the hydrophobic ionic liquid phase and analytes. Parameters of the proposed method including concentration of 1‐hexyl‐3‐methylimidazolium tetrafluoroborate, flow rate of carrier gas, floatation time, types and concentration of ionic liquids, salt concentration in samples, extraction time, and centrifugation time were evaluated. The recoveries were between 98 and 105% with relative standard deviations lower than 7% for lake water and well water samples. The isolation of the target compounds from the water was found to be efficient, and the enrichment factors ranged from 4445 to 4632. This developing method is free of volatile organic solvents compared with regular extraction. Based on the unique properties of ionic liquids, the application of foam floatation, and dispersive liquid–liquid microextraction was widened. 相似文献
11.
Trace analysis of some organophosphorus pesticides in rice samples using ultrasound‐assisted dispersive liquid–liquid microextraction and high‐performance liquid chromatography 下载免费PDF全文
Kiomars Sharafi Nazir Fattahi Amir Hossein Mahvi Meghdad Pirsaheb Nahid Azizzadeh Masomeh Noori 《Journal of separation science》2015,38(6):1010-1016
An ultrasound‐assisted dispersive liquid–liquid microextraction based on solidification of a floating organic drop method followed by high‐performance liquid chromatography was developed for the extraction, preconcentration, and determination of trace amounts of organophosphorus pesticides in rice samples. Variables affecting the performance of both steps were thoroughly investigated. Some effective parameters on extraction were studied and optimized. Under the optimum conditions, recoveries for rice sample are in the range of 58.0–66.0%. The calibration graphs are linear in the range of 4–800 μg/kg and, limits of detection and limits of quantification are in the range of 1.5–3 and 4.2–8.5 μg/kg, respectively. The relative standard deviation for 50.0 μg/kg of organophosphorus pesticides in rice sample are in the range of 4.4–5.1% (n = 5). The obtained results show that proposed method is a fast and simple method for the determination of pesticides in cereals. 相似文献
12.
A simple, rapid, and sensitive method based on dispersive liquid–liquid microextraction combined with HPLC‐UV detection applied for the quantification of chlordiazepoxide in some real samples. The effect of different extraction conditions on the extraction efficiency of the chlordiazepoxide drug was investigated and optimized using central composite design as a conventional efficient tool. Optimum extraction condition values of variables were set as 210 μL chloroform, 1.8 mL methanol, 1.0 min extraction time, 5.0 min centrifugation at 5000 rpm min?1, neutral pH, 7.0% w/v NaCl. The separation was reached in less than 8.0 min using a C18 column using isocratic binary mobile phase (acetonitrile/water (60:40, v/v)) with flow rate of 1.0 mL min?1. The linear response (r2 > 0.998) was achieved in the range of 0.005–10 μg mL?1 with detection limit 0.0005 μg mL?1. The applicability of this method for simultaneous extraction and determination of chlordiazepoxide in four different matrices (water, urine, plasma, and chlordiazepoxide tablet) were investigated using standard addition method. Average recoveries at two spiking levels were over the range of 91.3–102.5% with RSD < 5.0% (n = 3). The obtained results show that dispersive liquid–liquid microextraction combined with HPLC‐UV is a fast and simple method for the determination of chlordiazepoxide in real samples. 相似文献
13.
Optimized determination of polybrominated diphenyl ethers by ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography 下载免费PDF全文
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples. 相似文献
14.
Determination of diflubenzuron and chlorbenzuron in fruits by combining acetonitrile‐based extraction with dispersive liquid–liquid microextraction followed by high‐performance liquid chromatography 下载免费PDF全文
In this study, a simple and low‐organic‐solvent‐consuming method combining an acetonitrile‐partitioning extraction procedure followed by “quick, easy, cheap, effective, rugged and safe” cleanup with ionic‐liquid‐based dispersive liquid–liquid microextraction and high‐performance liquid chromatography with diode array detection was developed for the determination of diflubenzuron and chlorbenzuron in grapes and pears. Ionic‐liquid‐based dispersive liquid–liquid microextraction was performed using the ionic liquid 1‐hexyl‐3‐methylimidazolium hexafluorophosphate as the extractive solvent and acetonitrile extract as the dispersive solvent. The main factors influencing the efficiency of the dispersive liquid–liquid microextraction were evaluated, including the extractive solvent type and volume and the dispersive solvent volume. The validation parameters indicated the suitability of the method for routine analyses of benzoylurea insecticides in a large number of samples. The relative recoveries at three spiked levels ranged between 98.6 and 109.3% with relative standard deviations of less than 5.2%. The limit of detection was 0.005 mg/kg for the two insecticides. The proposed method was successfully used for the rapid determination of diflubenzuron and chlorbenzuron residues in real fruit samples. 相似文献
15.
Sudan Red pollutants have gained more attention in recent years. The present study described a simple and sensitive determination method for Sudan Red pollutants with dispersive liquid–liquid microextraction coupled to high‐performance liquid chromatography. Chlorobenzene and ethanol were used as the extraction solvent and disperser solvent, respectively. The possible parameters such as the kind of solvents, ionic strength, and sample pH that could affect the enrichment have been optimized. Under the optimal conditions, the pollutants have been well enriched and the linear ranges of Sudan Red I and II were in the range of 0.3–40 μg/L, and the linear ranges of Sudan Red III and IV were in the range of 1.2–160 μg/L. The detection limits were in the range of 0.18–0.46 μg/L, and the precisions were in the range of 3.7–5.9%. All these demonstrated that the proposed method could be a good alternative for the routine analysis of Sudan Red pollutants in water samples. 相似文献
16.
Alternative solvent‐based methyl benzoate vortex‐assisted dispersive liquid–liquid microextraction for the high‐performance liquid chromatographic determination of benzimidazole fungicides in environmental water samples 下载免费PDF全文
Vortex‐assisted dispersive liquid–liquid microextraction using methyl benzoate as an alternative extraction solvent for extracting and preconcentrating three benzimidazole fungicides (i.e., carbendazim, thiabendazole, and fluberidazole) in environmental water samples before high‐performance liquid chromatographic analysis has been developed. The selected microextraction conditions were 250 μL of methyl benzoate containing 300 μL of ethanol, 1.0% w/v sodium acetate, and vortex agitation speed of 2100 rpm for 30 s. Under optimum conditions, preconcentration factors were 14.5–39.0 for the target fungicides. Limits of detection were obtained in the range of 0.01–0.05 μg/L. The proposed method was then applied to surface water samples and the recovery evaluations at three spiked concentration levels of 5, 30, and 50 μg/L were obtained in the range of 77.4–110.9% with the relative standard deviation <7.4%. The present method was simple, rapid, low cost, sensitive, environmentally friendly, and suitable for the trace analysis of the studied fungicides in environmental water samples. 相似文献
17.
Dispersive liquid–liquid microextraction based on amine‐functionalized Fe3O4 nanoparticles for the determination of phenolic acids in vegetable oils by high‐performance liquid chromatography with UV detection 下载免费PDF全文
Zhihong Shi Lingna Qiu Dan Zhang Mengyuan Sun Hongyi Zhang 《Journal of separation science》2015,38(16):2865-2872
A novel dispersive liquid–liquid microextraction method based on amine‐functionalized Fe3O4 magnetic nanoparticles was developed for the determination of six phenolic acids in vegetable oils by high‐performance liquid chromatography. Amine‐functionalized Fe3O4 was synthesized by a one‐pot solvothermal reaction between Fe3O4 and 1,6‐hexanediamine and characterized by transmission electron microscopy and Fourier transform infrared spectrophotometry. A trace amount of phosphate buffer solution (extractant) was adsorbed on bare Fe3O4‐NH2 nanoparticles by hydrophilic interaction to form the “magnetic extractant”. Rapid extraction could be achieved while the “magnetic extractant” on amine‐functionalized Fe3O4 nanoparticles was dispersed in the sample solution by vortexing. After extraction, the “magnetic extractant” was collected by application of an external magnet. Some important parameters, such as pH and volume of extraction and desorption solvents, the extraction and desorption time needed were carefully investigated and optimized to achieve the best extraction efficiency. Under the optimal conditions, satisfactory extraction recoveries were obtained for the six phenolic acids in the range of 84.2–106.3%. Relative standard deviations for intra‐ and inter‐day precisions were less than 6.3 and 10.0%, respectively. Finally, the established method was successfully applied for the determination of six phenolic acids in eight kinds of vegetable oils. 相似文献
18.
Ultrasound‐assisted emulsification microextraction coupled with high‐performance liquid chromatography for the simultaneous determination of fragrance allergens in cosmetics and water 下载免费PDF全文
Jessica Pérez‐Outeiral Esmeralda Millán Rosa Garcia‐Arrona 《Journal of separation science》2015,38(9):1561-1569
A simple, inexpensive, and environmentally friendly method based on ultrasound‐assisted emulsification microextraction followed by solidification of floating organic drop and high‐performance liquid chromatography coupled to diode array detection was developed for the simultaneous determination of 18 potentially allergenic fragrance substances. Several parameters affecting the microextraction process were investigated in detail by the “one‐variable‐at‐a‐time” approach. Optimal conditions were the following: 50 μL of 2‐dodecanol as extraction solvent, 10 mL of sample containing 150 g/L of salt, and 5 min of sonication at 35°C. Under the optimized conditions, method showed good linearity in the selected ranges, with squared correlation coefficients ranging from 0.948 to 0.999. Limits of detection ranged from 0.001 to 0.154 μg/mL and enrichment factors from 9 to 237. Precision of the method, expressed as relative standard deviation, was checked at two levels obtaining good results (3.3–14.4%). Recovery studies were made in baby bath water and in eau de cologne showing acceptable accuracy. Finally, the developed method was successfully applied to different commercial cosmetic and water samples. The most commonly found analyte was linalool followed by cinnamal and lilial. Most of the analyzed samples contained at least one of the target compounds. 相似文献
19.
Mohammad Reza Hadjmohammadi Mohammad Hossein Fatemi Panteha Shakeri 《Journal of separation science》2012,35(23):3375-3380
Optimization of alcoholic‐assisted dispersive liquid–liquid microextraction of pentachlorophenol (PCP) and determination of it with high‐performance liquid chromatography (UV‐Vis detection) was investigated. A Plackett‐Burman design and a central composite design were applied to evaluate the alcoholic‐assisted dispersive liquid–liquid microextraction procedure. The effect of seven parameters on extraction efficiency was investigated. The factor studied were type and volume of extraction and dispersive solvents, amount of salt, and agitation time. According to Plackett‐Burman design results, the effective parameters were type and volume of extraction solvent and agitation time. Next, a central composite design was applied to obtain optimal condition. The optimized conditions were obtained at 170‐μL 1‐octanol and 5‐min agitation time. The enrichment factor of PCP was 242 with limits of detection of 0.04 μg L?1. The linearity was 0.1–100 μg L?1 and the extraction recovery was 92.7%. RSD for intra and inter day of extraction of PCP were 4.2% and 7.8%, respectively for five measurements. The developed method was successfully applied for the determination of PCP in environmental water samples. 相似文献
20.
Salting‐out assisted liquid–liquid extraction coupled to dispersive liquid–liquid microextraction for the determination of chlorophenols in wine by high‐performance liquid chromatography 下载免费PDF全文
A novel procedure of sample preparation combined with high‐performance liquid chromatography with diode array detection is introduced for the analysis of highly chlorinated phenols (trichlorophenols, tetrachlorophenols, and pentachlorophenol) in wine. The main features of the proposed method are (i) low‐toxicity diethyl carbonate as extraction solvent to selectively extract the analytes without matrix effect, (ii) the combination of salting‐out assisted liquid–liquid extraction and dispersive liquid–liquid microextraction to achieve an enrichment factor of 334–361, and (iii) the extract is analyzed by high‐performance liquid chromatography to avoid derivatization. Under the optimum conditions, correlation coefficients (r) were >0.997 for calibration curves in the range 1–80 ng/mL, detection limits and quantification limits ranged from 0.19 to 0.67 and 0.63 to 2.23 ng/mL, respectively, and relative standard deviation was <8%. The method was applied for the determination of chlorophenols in real wines, with recovery rates in the range 82–104%. 相似文献