首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two‐dimensional liquid chromatography largely increases the number of separated compounds in a single run, theoretically up to the product of the peaks separated in each dimension on the columns with different selectivities. On‐line coupling of a reversed‐phase column with an aqueous normal‐phase (hydrophilic interaction liquid chromatography) column yields orthogonal systems with high peak capacities. Fast on‐line two‐dimensional liquid chromatography needs a capillary or micro‐bore column providing low‐volume effluent fractions transferred to a short efficient second‐dimension column for separation at a high mobile phase flow rate. We prepared polymethacrylate zwitterionic monolithic micro‐columns in fused silica capillaries with structurally different dimethacrylate cross‐linkers. The columns provide dual retention mechanism (hydrophilic interaction and reversed‐phase). Setting the mobile phase composition allows adjusting the separation selectivity for various polar substance classes. Coupling on‐line an organic polymer monolithic capillary column in the first dimension with a short silica‐based monolithic column in the second dimension provides two‐dimensional liquid chromatography systems with high peak capacities. The silica monolithic C18 columns provide higher separation efficiency than the particle‐packed columns at the flow rates as high as 5 mL/min used in the second dimension. Decreasing the diameter of the silica monolithic columns allows using a higher flow rate at the maximum operation pressure and lower fraction volumes transferred from the first, hydrophilic interaction dimension, into the second, reversed‐phase mode, avoiding the mobile phase compatibility issues, improving the resolution, increasing the peak capacity, and the peak production rate.  相似文献   

2.
Three mixed‐mode high‐performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine‐polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed‐mode column (C18) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed‐mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18) mixed‐mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution.  相似文献   

3.
In this study, 3‐diethylamino‐1‐propyne was covalently bonded to the azide‐silica by a click reaction to obtain a novel dual‐function mixed‐mode chromatography stationary phase for protein separation with a ligand containing tertiary amine and two ethyl groups capable of electrostatic and hydrophobic interaction functionalities, which can display hydrophobic interaction chromatography character in a high‐salt‐concentration mobile phase and weak anion exchange character in a low‐salt‐concentration mobile phase employed for protein separation. As a result, it can be employed to separate proteins with weak anion exchange and hydrophobic interaction modes, respectively. The resolution and selectivity of the stationary phase were evaluated in both hydrophobic interaction and ion exchange modes with standard proteins, respectively, which can be comparable to that of conventional weak anion exchange and hydrophobic interaction chromatography columns. Therefore, the synthesized weak anion exchange/hydrophobic interaction dual‐function mixed‐mode chromatography column can be used to replace two corresponding conventional weak anion exchange and hydrophobic interaction chromatography columns to separate proteins. Based on this mixed‐mode chromatography stationary phase, a new off‐line two‐dimensional liquid chromatography technology using only a single dual‐function mixed‐mode chromatography column was developed. Nine kinds of tested proteins can be separated completely using the developed method within 2.0 h.  相似文献   

4.
Hydrophilic interaction liquid chromatography on polar columns in aqueous–organic mobile phases has become increasingly popular for the separation of many biologically important compounds in chemical, environmental, food, toxicological, and other samples. In spite of many new applications appearing in literature, the retention mechanism is still controversial. This review addresses recent progress in understanding of the retention models in hydrophilic interaction liquid chromatography. The main attention is focused on the role of water, both adsorbed by the column and contained in the bulk mobile phase. Further, the theoretical retention models in the isocratic and gradient elution modes are discussed. The dual hydrophilic interaction liquid chromatography reversed‐phase retention mechanism on polar columns is treated in detail, especially with respect to the practical use in one‐ and two‐dimensional liquid chromatography separations.  相似文献   

5.
A dicationic imidazolium ionic liquid modified silica stationary phase was prepared and evaluated by reversed‐phase/anion‐exchange mixed‐mode chromatography. Model compounds (polycyclic aromatic hydrocarbons and anilines) were separated well on the column by reversed‐phase chromatography; inorganic anions (bromate, bromide, nitrate, iodide, and thiocyanate), and organic anions (p‐aminobenzoic acid, p‐anilinesulfonic acid, sodium benzoate, pathalic acid, and salicylic acid) were also separated individually by anion‐exchange chromatography. Based on the multiple sites of the stationary phase, the column could separate 14 solutes containing the above series of analytes in one run. The dicationic imidazolium ionic liquid modified silica can interact with hydrophobic analytes by the hydrophobic C6 chain; it can enhance selectivity to aromatic compounds by imidazolium groups; and it also provided anion‐exchange and electrostatic interactions with ionic solutes. Compared with a monocationic ionic liquid functionalized stationary phase, the new stationary phase represented enhanced selectivity owing to more interaction sites.  相似文献   

6.
Dopamine is easy to self‐polymerize under alkaline conditions and the resultant polydopamine is easy to adhere to the surface of many organic and inorganic materials. Based on the characteristics of dopamine, in this paper, a new polydopamine functionalized monolithic silica column was successfully prepared for performing mixed‐mode chromatography. The performance of the column was evaluated by the separation of different types of samples including alkylbenzenes, polycyclic aromatic hydrocarbons, aromatic acids, phenols, and bases. The mechanism for the separation of these compounds was studied and appeared to involve the mixed interactions containing π?π, hydrophobic, electrostatic, and hydrophilic interactions.  相似文献   

7.
A monolithic capillary column with a mixed‐mode stationary phase of reversed‐phase/hydrophilic interaction chromatography was prepared for capillary liquid chromatography. The monolith was created by an in‐situ copolymerization of a homemade monomer N,N‐dimethyl‐N‐acryloxyundecyl‐N‐(3‐sulfopropyl) ammonium betaine and a crosslinker pentaerythritol triacrylate in a binary porogen agent consisting of methanol and isopropanol. The functional monomer was designed to have a highly polar zwitterionic sulfobetaine terminal group and a hydrophobic long alkyl chain moiety. The composition of the polymerization solution was systematically optimized to permit the best column performance. The columns were evaluated by using acidic, basic, polar neutral analytes, as well as a set of alkylbenzenes and Triton X100. Very good separations were obtained on the column with the mixed‐mode stationary phase. It was demonstrated that the mixed‐mode stationary phase displayed typic dual retention mechanisms of reversed‐phase/hydrophilic interaction liquid chromatography depending on the content of acetonitrile in the mobile phase. The method for column preparation is reproducible.  相似文献   

8.
The potential of enhanced‐fluidity liquid chromatography, a subcritical chromatography technique, in mixed‐mode hydrophilic interaction/strong cation‐exchange separations is explored, using amino acids as analytes. The enhanced‐fluidity liquid mobile phases were prepared by adding liquefied CO2 to methanol/water mixtures, which increases the diffusivity and decreases the viscosity of the mixture. The addition of CO2 to methanol/water mixtures resulted in increased retention of the more polar amino acids. The “optimized” chromatographic performance (achieving baseline resolution of all amino acids in the shortest amount of time) of these methanol/water/CO2 mixtures was compared to traditional acetonitrile/water and methanol/water liquid chromatography mobile phases. Methanol/water/CO2 mixtures offered higher efficiencies and resolution of the ten amino acids relative to the methanol/water mobile phase, and decreased the required isocratic separation time by a factor of two relative to the acetonitrile/water mobile phase. Large differences in selectivity were also observed between the enhanced‐fluidity and traditional liquid mobile phases. A retention mechanism study was completed, that revealed the enhanced‐fluidity mobile phase separation was governed by a mixed‐mode retention mechanism of hydrophilic interaction/strong cation‐exchange. On the other hand, separations with acetonitrile/water and methanol/water mobile phases were strongly governed by only one retention mechanism, either hydrophilic interaction or strong cation exchange, respectively.  相似文献   

9.
The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono‐, di‐, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation.  相似文献   

10.
A simple and environmentally friendly reversed‐phase high‐performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose‐based Chiralpak IC‐3 chiral stationary phase using a green and low‐toxicity ethanol‐aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed‐mode hydrophilic interaction liquid chromatography and reversed‐phase retention mechanism operating on the IC‐3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water‐rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min.  相似文献   

11.
This study demonstrates the use of hydrophilic interaction liquid chromatography (HILIC) for the separation of both active and inactive ingredients in pharmaceuticals from a single injection. Excipients commonly used in parenteral formulations were separated using a gradient method employing increasing aqueous composition. An evaporative light-scattering detector (ELSD) provided direct detection of inactive excipients and inorganic salts lacking UV chromophores. Analyses of Gemzar parenteral formulations using optimized isocratic HILIC-ELSD method conditions were performed based on retention time screening from the gradient assay. All of the components were efficiently separated using a TSK-Gel Amide 80 column including gemcitabine, mannitol, and sodium cation demonstrating the qualitative capability of the technique. The method was thoroughly validated for mannitol content to access the quantitative potential of the technique. Validation parameters included linearity, accuracy, specificity, solution stability, repeatability, and intermediate precision. Overall, the method described in this report proved to be very robust and represents a novel technique to conveniently separate and detect the active and inactive components in pharmaceuticals both quickly and accurately.  相似文献   

12.
A novel dual‐retention mechanism mixed‐mode stationary phase based on silica gel functionalized with PEG 400 and succinic anhydride as the ligand was prepared and characterized by infrared spectra and elemental analysis. Because of the ligand containing PEG 400 and carboxyl function groups, it displayed hydrophobic interaction chromatography (HIC) characteristic in a high‐salt‐concentration mobile phase, and weak cation exchange chromatography (WCX) characteristic in a low‐salt‐concentration mobile phase. As a result, it can be employed to separate proteins with both WCX and HIC modes. The resolution and selectivity of the stationary phase was evaluated under both HIC and WCX modes with protein standards, and its performance was comparable to that of conventional ion‐exchange chromatography and HIC columns. The results indicated that the novel dual‐retention mechanism column, in many cases, could replace two individual WCX and HIC columns as a ‘2D column’. In addition, the mixed retention mechanism of proteins on this ‘2D column’ was investigated with stoichiometric displacement theory for retention of solute in liquid chromatography in detail in order to understand why the dual‐retention mechanism column has high resolution and selectivity for protein separation under WCX and HIC modes, respectively. Based on this ‘2D column’, a new 2DLC technology with a single column was developed. It is very important in proteome research and recombinant protein drug production to save column expense and simplify the processes in biotechnology. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

13.
Maltose covalently bonded to silica was prepared by using carbonyl diimidazole as a cross‐linker and employed as a stationary phase for hydrophilic interaction liquid chromatography. The column efficiency and the effect of water content, buffer concentration, and pH value influenced on retention were investigated. The separation or enrichment selectivity was also studied with nucleosides, saccharides, amino acids, peptides, and glycopeptides. The results indicated that the stationary phase processed good separation efficiency and separation selectivity in hydrophilic interaction liquid chromatography mode. Moreover, a two‐dimensional hydrophilic interaction liquid chromatography× reversed‐phase liquid chromatography method with high orthogonality was developed to analyze the Ginkgo Biloba extract fractions. The development of this two‐dimensional chromatographic system would be an effective tool for the separation of complex samples of different polarities and contents.  相似文献   

14.
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds.  相似文献   

15.
Ramosetron is an enantiopure active pharmaceutical ingredient marketed in Japan since 1996 and later in a few Southeast Asian countries predominantly as an antiemetic for patients receiving chemotherapy. In this study, a simple and rapid high‐performance liquid chromoatography method for the separation of ramosetron and its related enantiomeric impurity by using hydrophilic interaction liquid chromatography mode is presented. Chiral resolution was performed on an analytical column (100 mm × 4.6 mm id) packed with 3 μm particles of cellulose‐based Chiralpak IC‐3 chiral stationary phase. Using a mobile phase containing acetonitrile–water–diethylamine (100:10:0.1, v/v/v) and setting the column temperature at 35°C, the resolution value was 7.35. At a flow rate of 1 mL/min, the enantioseparation was completed within 5 min. The proposed method was partially validated and it has proven to be sensitive with limit of detection and limit of quantitation of the (S)‐enantiomer impurity of 44.5 and 133.6 ng/mL.  相似文献   

16.
离子交换色谱法同时测定啤酒中有机酸和无机阴离子   总被引:13,自引:2,他引:13  
建立了用亲水性阴离子交换分离柱,KOH为淋洗液等浓度泵作梯度淋洗,电导检测,同时分离和检测16种无机阴离子和低分子量有机酸的离子色谱法。方法对所测无机阴离子和有机酸检出限在9.3~32μg/L之间;线性范围均在2个数量级以上;回收率在90.2%~107.2%之间。方法用于啤酒样品的分析,结果满意,样品的RSD小于5.3%(n=7)。  相似文献   

17.
Poly(l ‐lactic acid) is a linear aliphatic thermoplastic polyester that can be produced from renewable resources. A poly(l ‐lactic acid)‐modified silica stationary phase was newly prepared by amide bond reaction between amino groups on aminopropyl silica and carboxylic acid groups at the end of the poly(l ‐lactic acid) chain. The poly(l ‐lactic acid)‐silica column was characterized in reversed‐phase liquid chromatography and hydrophilic interaction liquid chromatography with the use of different mobile phase compositions. The poly(l ‐lactic acid)‐silica column was found to work in both modes, and the retention of test compounds depending on acetonitrile content exhibited “U‐shaped” curves, which was an indicator of reversed‐phase liquid chromatography/hydrophilic interaction liquid chromatography mixed‐mode retention behavior. In addition, carbonyl groups included into the poly(l ‐lactic acid) backbone work as an electron‐accepting group toward a polycyclic aromatic hydrocarbon and provide π–π interactions.  相似文献   

18.
The overloaded band profiles of the protonated species of propranolol and amitriptyline were recorded under acidic conditions on four classes of stationary phases including a conventional silica/organic hybrid material in reversed‐phase liquid chromatography mode (BEH‐C18), an electrostatic repulsion reversed‐phase liquid chromatography C18 column (BEH‐C18+), a poly(styrene‐divinylbenzene) monolithic column, and a hydrophilic interaction chromatography stationary phase (underivatized BEH). The same amounts of protonated bases per unit volume of stationary phase were injected in each column (16, 47, and 141 μg/cm3). The performance of the propranolol/amitriptyline purification was assessed on the basis of the asymmetry of the recorded band profiles and on the selectivity factor achieved. The results show that the separation performed under reversed‐phase liquid chromatography like conditions (with BEH‐C18, BEH‐C18+, and polymer monolith materials) provide the largest selectivity factors due to the difference in the hydrophobic character of the two compounds. However, they also provide the most distorted overloaded band profiles due to a too small loading capacity. Remarkably, symmetric band profiles were observed with the hydrophilic interaction chromatography column. The larger loading capacity of the hydrophilic interaction chromatography column is due to the accumulation of the protonated bases into the diffuse water layer formed at the surface of the polar adsorbent. This work encourages purifying ionizable compounds on hydrophilic interaction chromatography columns rather than on reversed‐phase liquid chromatography columns.  相似文献   

19.
A novel sulfonic‐azobenzene‐functionalized amphiphilic silica material was synthesized through the preparation of a new sulfonic azobenzene monomer and its grafting on mercaptopropyl‐modified silica by a surface‐initiated radical chain‐transfer reaction. The synthesis was confirmed by infrared spectra, elemental analysis, and thermogravimetric analysis. This new material was successfully applied as a new kind of mixed‐mode stationary phase in liquid chromatography. This allows an exceptionally flexible adjustment of retention and selectivity by tuning the experimental conditions. The distinct separation mechanisms were outlined by selected examples of chromatographic separations in the different modes. In reversed‐phase liquid chromatography, this new stationary phase presented specific chromatographic performance when evaluated using a Tanaka test mixture. Seven dinitro aromatic isomers, four steroids, and seven flavonoids were separated successfully in simple reversed‐phase mode. This stationary phase can also be used in hydrophilic interaction chromatography because of the existing polar functional groups; for this, nucleosides and their bases were used as a test mixture. Interestingly, the same nucleosides and bases can also be separated in per aqueous liquid chromatography using the same stationary phase. Three ginsenosides including Rg1, Re, and Rb1 were successfully separated in hydrophilic mode. There is the potential for more applications to benefit from this useful column.  相似文献   

20.
A type of mixed‐mode chromatography was integrated with high‐performance liquid chromatography for protein analysis and separation. The chromatographic behavior was tested using bovine serum albumin and lysozyme as model proteins. For the mixed‐mode column, the silica beads were activated with γ‐(2,3‐epoxypropoxy)‐propytrimethoxysilane and coupled with 4‐mercaptopyridine as the functional ligand. The effects of pH, salt, and the organic solvent conditions of the mobile phase on the retention behavior were studied, which provided valuable clues for separation strategy. When eluted with a suitable pH gradient, salt concentration gradient, and acetonitrile content gradient, the separation behavior of bovine serum albumin and lysozyme could be controlled by altering the conditions of the mobile phase. The results indicated this type of chromatography might be a useful method for protein analysis and separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号