首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel poly(ionic liquids) were synthesized and immobilized on prepared magnetic nanoparticles, which were used to extract pesticides from fruit and vegetable samples by dispersive solid‐phase extraction prior to high‐performance liquid chromatography analysis. Compared with monomeric ionic liquids, poly(ionic liquids) have a larger effective contact area and higher viscosity, so they can achieve higher extraction efficiency and be used repeatedly without a decrease in analyte recovery. The immobilized poly(ionic liquids) were rapidly separated from the sample matrix, providing a simple approach for sample pretreatment. The nature and volume of the desorption solvent and amount of poly(ionic liquid)‐modified magnetic material were optimized for the extraction process. Under optimum conditions, calibration curves were linear (R2 > 0.9988) for pesticide concentrations in the range of 0.100–10.000 μg/L. The relative standard deviations for repeated determinations of the four analytes were 2.29–3.31%. The limits of detection and quantification were 0.29–0.88 and 0.97–2.93 μg/L, respectively. Our results demonstrate that the developed poly(ionic liquid)‐modified material is an effective absorbent to extract pesticides from fruit and vegetable samples.  相似文献   

2.
溶胶-凝胶固相微萃取涂层及其在农药残留分析中的应用   总被引:1,自引:0,他引:1  
利用溶胶-凝胶(sol-gel)技术制备固相微萃取(SPME)涂层材料.通过硅醇盐前驱体与涂层聚合物羟基硅油(OH-TSO)的水解共聚的方法,成功地制备了聚二甲基硅氧烷sol-gel 涂层的SPME 萃取头,并以农药的混合标准水溶液为研究对象,用直接-固相微萃取-气相色谱法(GC)对涂层的性能进行考察,制成的萃取头适用于多种农药残留的萃取分离分析.  相似文献   

3.
Here in, magnetic nanoparticles combined with graphene oxide adsorbent were fabricated via a microwave‐assisted synthesis method, and used in the solid‐phase extraction of three phenolic compounds (phenol, 4‐nitrophenol, and m‐methylphenol) in environmental water samples. Various instrumental methods were employed to characterize the magnetic nanoparticles modified with graphene oxide. The influence of experimental parameters, such as desorption conditions, amount of adsorbent, extraction time, and pH, on the extraction efficiency was investigated. Owing to the high surface area and excellent adsorption capacity of the prepared material, satisfactory extraction was achieved. Under optimum conditions, a linear response was observed in the concentration range of 1.000–100.0 μg/L for phenol, 0.996–99.6 μg/L for 4‐nitrophenol, and 0.975–97.5 μg/L for m‐methylphenol, with correlation coefficients in the range of 0.9995–0.9997. The limit of detection (signal‐to‐noise ratio of 3) of the method varied between 0.5 and 0.8 μg/L. The relative standard deviations were <5.2%. The recovery percentages of the method were in the range of 89.1–104.3%. The results indicate that the graphene oxide‐modified magnetic nanoparticles possess high adsorptive abilities toward phenolic compounds in environmental water samples.  相似文献   

4.
As a key representative organism, earthworms can directly illustrate the influence of pesticides on environmental organisms in soil ecosystems. The present work aimed to develop a high‐throughput multipesticides residue analytical method for earthworms using solid–liquid extraction with acetonitrile as the solvent and magnetic material‐based dispersive solid‐phase extraction for purification. Magnetic Fe3O4 nanoparticles were modified with a thin silica layer to form Fe3O4‐SiO2 nanoparticles, which were fully characterized by field‐emission scanning electron microscopy, transmission electron microscopy, Fourier‐transform infrared spectroscopy, X‐ray diffractometry, and vibrating sample magnetometry. The Fe3O4‐SiO2 nanoparticles were used as the separation media in dispersive solid‐phase extraction with primary secondary amine and ZrO2 as the cleanup adsorbents to eliminate matrix interferences. The amounts of nanoparticles and adsorbents were optimized for the simultaneous determination of 44 pesticides and six metabolites in earthworms by liquid chromatography with tandem mass spectrometry. The method performance was systematically validated with satisfactory results. The limits of quantification were 20 μg/kg for all analytes studied, while the recoveries of the target analytes ranged from 65.1 to 127% with relative standard deviation values lower than 15.0%. The developed method was subsequently utilized to explore the bioaccumulation of bitertanol in earthworms exposed to contaminated soil, verifying its feasibility for real sample analysis.  相似文献   

5.
A method for the determination of 33 pesticides in peanut oil by GC-MS was described. Two extraction procedures based on (i) low-temperature extraction and (ii) liquid-liquid extraction were tested for the optimization of the method. The mixture of anhydrous MgSO(4) with primary secondary amine (PSA) or with PSA and C(18) was performed as sorbents in dispersive SPE. Low temperature along with PSA and C(18) cleanup gave the best results. Pesticides were identified and quantified by GC-MS in SIM mode. The correlation coefficients, R(2), in the linear range tests were better than 0.990. The average recoveries for most pesticides (spiked at 0.02, 0.05, 0.2, and 1 mg/kg) ranged from 70 to 110%, the RSD was below 20% in most instances, and LODs varied from 0.5 to 8 mug/kg.  相似文献   

6.
In this work, a novel extraction and enrichment technique based on hexadecyldimethyl amine functionalized magnetic nanoparticles has been successfully developed for the preconcentration and ultrasensitive detection of perfluorinated compounds in environmental water samples with high‐performance liquid chromatography coupled with tandem triple quadrupole mass spectrometry. As a novel surfactant, hexadecyldimethyl amine functionalized on magnetic nanoparticles was realized through one‐step facile and robust quaterization reaction, greatly superior to previous multiple‐step and unstable modification. The functional nanoparticles of homogeneous nanospheres and excellent magnetic properties were characterized with scanning electron microscopy, X‐ray diffraction patterns, Fourier transform infrared spectroscopy, and vibrating sample magnetometry. Dual mechanisms of both hydrophobic and electrostatic interactions were simultaneously introduced for anionic perfluorinated compounds effective enrichment. Under optimized extraction conditions, satisfactory precision and accuracy for anionic perfluorinated compounds analysis were achieved with good linear ranging from 0.5 to 20 ng/L, as well as fascinating sensitivity with low limits of detection up to 3.0 × 10?2–5.0 × 10?2 ng/L. High preconcentration efficiency and extraction recoveries ranged from 81.04–103.2% with relative standard deviations (n = 5) less than 10% have also been realized. Thereby, our proposed method is convenient and efficient for enrichment, exhibiting good application prospect in future environmental perfluorinated compounds analysis.  相似文献   

7.
Despite the increasing number of articles on trace elemental speciation with magnetic solid phase extraction (MSPE), there are no dedicated reviews that cover the group of elements with most related literature, and hence the need for this one. This article provides a comprehensive review of the relevant literature related to Cr, Hg, As, Se, and other metals and metalloids with a special focus on the sorbents, species determined, interactions involved between them and applications, mainly to environmental, food and biological samples. Moreover, this review covers the analysis of metallic nanoparticles (NPs) and the ions that are generated from them as a new facet of speciation. The analytical performance of the methods is addressed from a presentative and critical point of view and, finally, future trends and the related challenges are shown.  相似文献   

8.
Extraction, pre-concentration and determination of trace amounts of mercury ions from water samples were investigated by magnetic solid phase extraction (MSPE) method using Fe3O4 nanoparticles decorated with polythionine as an adsorbent. A simple chemical synthesis by catalytic reaction of thionine in the presence of FeCl3 and hydrogen peroxide was used for preparation of the magnetic sorbent. Scanning electron microscopy, transmission electron microscopy, energy-dispersive X-ray spectroscopy, vibrating sample magnetometer analysis and Fourier transform infrared spectroscopy were used to characterise the adsorbent. Mercury ions were determined by cold vapour atomic absorption spectrometry. The parameters for MSPE procedure, such as pH of the extraction solution, adsorption time, weight adsorbent, elution conditions (type, concentration and volume of the eluent), volume of the sample solution and effects of coexisting ions were investigated. The obtained optimal conditions were: sample pH of 4; sorbent amount of 4 mg; sorption time of 20 min; elution solvent of HNO3 (0.3 mol L?1)/thiourea (2% w/v) with volume of 2 mL, and breakthrough volume of 400 mL. A good linearity in the concentration range of 0.025–40 µg L?1 (R2 > 0.999) with the pre-concentration factor of 198 was obtained. The limits of detection and quantification were achieved as 0.008 and 0.025 µg L?1, respectively. Furthermore, sea and river water samples were analysed and good recoveries (97.1–99.6%) were obtained.  相似文献   

9.
Ionic liquids immobilized on magnetic nanoparticles were prepared by an efficient microwave‐assisted synthesis method, and the properties of the ionic liquids were tuned based on the aromatic functional modification of its anion through a simple metathesis reaction. The novel as‐synthesized magnetic materials were characterized by various instrumental techniques. The magnetic nanoparticles have been utilized as adsorbents for the extraction of four sulfonylurea herbicides in tea samples, in combination with high‐performance liquid chromatography analysis. Significant extraction parameters, including type and volume of desorption solvent, extraction time, amount of adsorbent, and ionic strength were investigated. Under the optimum conditions, good linearity was obtained in the concentration range of 1–150 μg/L for metsulfuron‐methyl and bensulfuron‐methyl, and 3–150 μg/L for sulfometuron‐methyl and chlorimuron‐ethyl, with correlation coefficients R2 > 0.9987. Low limits of detection were obtained ranging from 0.13 to 0.81 μg/L. The relative standard deviations were 1.8–3.9%. Comparisons of extraction efficiency with conventional solid‐phase extraction equipped with a commercial C18 cartridge were performed. Results indicated that magnetic solid‐phase extraction is simple, time‐saving, efficient and inexpensive with the reusability of adsorbents. The proposed method has been successfully used to determine sulfonylurea herbicides from tea samples with satisfactory recoveries of 80.5–104.2%.  相似文献   

10.
Magnetic nanoparticles have been surface modified by molecular imprinting and evaluated as selective sorbents for the extraction of triazines from environmental waters. The use of propazine as template allowed us to synthesize a selective material able to simultaneously recognize and selective extract not only the template but also several other herbicides of the same family. A magnetic molecularly imprinted‐based dispersive solid‐phase extraction procedure was developed and fully optimized. Magnetic molecularly imprinted polymer particles can be easily collected and separated from liquid solvents and samples with the help of an external magnetic field, avoiding in that way any centrifugation or filtration steps, which represents a remarkable advantage over traditional procedures. Under optimum conditions, selective extraction of several triazines (cyanazine, simazine, atrazine, propazine, and terbutylazine) from environmental water samples was performed prior to final determination by high‐performance liquid chromatography with diode‐array detection. Recoveries for the studied triazines were within the range of 75.2–94.1%, with relative standard deviations lower than 11.3% (= 3). The limits of detection were within 0.16–0.51 µg/L, depending upon the triazine and the type of sample analyzed.  相似文献   

11.
In this study, the capability of the prepared polyaniline-coated Fe(3) O(4) nanoparticles for magnetic solid-phase extraction of three parabens from environmental wastewater, cream, and toothpaste samples is presented. Synthesized Fe(3) O(4) nanoparticles were coated with sulfate-doped polyaniline via polymerization of aniline in the presence of Fe(3) O(4) nanoparticles and sulfuric acid. Here, polyaniline-coated Fe(3) O(4) nanoparticles are presented as anion exchange sorbent, which extract anionic form of parabens via anion exchange with dopant of polyaniline. The experimental conditions affecting extraction efficiency were further studied and optimized. The experimental results showed that maximum extraction efficiency can be obtained at 70 mL sample solution of pH 8, extraction and desorption times of 2 and 1 min, respectively, 100 μL of 3% (v/v) acetic acid in acetonitrile as eluent, and 100 mg of the adsorbent. Under these conditions, the linear dynamic ranges were 0.5-100 μg/L with good correlation coefficients (0.998-0.999). The detection limits were in the range of 0.3-0.4 μg/L and the relative standard deviations were less than 2.4 (n = 5) for the three parabens. Finally, this fast and efficient method was further employed for determination of target analytes in cream, toothpaste, and environmental wastewater samples and satisfactory results were obtained.  相似文献   

12.
An extraction agent featuring a natural product, baicalin, anchored on the surface of nanomagnetic particles (BMNPs) is herein reported. A facile solid-phase extraction (SPE) procedure with high selectivity toward flavonoids using BMNPs has been established. BMNPs were proven very effective for enriching flavonoids from extracts of medicinal plants such as Rosa chinensis. The SPE protocol involving a convenient solid-liquid separation by using an external magnet field was easy to carry out. Further, the SPE sorbent (BMNPs) could be reused for many times reducing the operation cost. Importantly, flavonoids retained on the BMNPs were effectively recovered by eluting with methanol. Coupling the proposed SPE with ESI-MS/MS allowed a quick quantification of flavonoids in herbal extracts. Simultaneous determination of eight flavonoids extracted from R. chinensis was demonstrated in this work.  相似文献   

13.
In this article, the combination of commercial polymeric microparticles (OASIS MCX) and cobalt ferrite nanoparticles is evaluated in dispersive micro-solid phase extraction (D-μSPE) for the determination of six nitroaromatic hydrocarbons in water. The high affinity of the polymeric material toward the target analytes as well as the magnetic behavior of cobalt ferrite nanoparticles are combined in a synergic way to developed an efficient and simple D-μSPE approach. The sorptive performance of the hybrid material is compared with that most usual sorbents and the effect of its synthesis steps on the extraction capability is also evaluated in depth. After the optimization of selected variables, D-μSPE method was assessed in terms of linearity, sensitivity, precision and accuracy. The new extraction method allows the determination of the target compounds with limits of detection in the range from 0.12 to 1.26 μg/L and relative standard deviations lower than 9.6%. The recovery study was performed in two different water samples obtaining percentages from 71 to 103%, which demonstrated the applicability of the hybrid sorbent for the selected analytical problem.  相似文献   

14.
A simple and rapid method for the determination of methadone and its main metabolite EDDP in hair has been developed and validated. The analytes were completely extracted from the matrix after a short alkaline incubation, and the extracts were further cleaned up by solid‐phase extraction using mixed‐mode cartridges. Linearity was obtained from 0.1 (lower limit of quantitation, LLOQ) to 30 ng/mg for both compounds, with correlation coefficients higher than 0.99. Intra‐ and interday precision and accuracy were in conformity with internationally accepted guidelines for bioanalytical method validation, and the cleanup procedure presented mean extraction efficiencies higher than 90% for both analytes. This high efficiency greatly contributed to the low limits of quantitation achieved, and therefore this method can be successfully applied in the determination of methadone and EDDP in hair samples in clinical and forensic scenarios where these compounds are involved. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
This work provides a simple and rapid method for synthesis uniform simetryn imprinted nanoparticles, which can be used to pretreat the tested samples before detecting. A series of computational approach were employed for design simetryn‐imprinted polymer. Based on the conclusion of theoretical calculation, the simetryn imprinted nanoparticles were synthesized using simetryn as template, methacrylic acid as monomer with different solvent volume and synthesis conditions. The obtained nanoparticles have small size, uniform distribution and high imprinted factor. Scatchard analysis and quantum chemical calculations were applied for evaluating the interaction of simetryn with methacrylic acid in the imprinting process. The selectivity and recognition ability of the simetryn imprinted nanoparticles for six triazine herbicides and two other type herbicides were investigated. The results show that the simetryn imprinted nanoparticles had high selectivity and binding capacity and could be used for the separation and enrichment of four triazine pesticide residues from actual samples. A method of molecularly imprinted matrix solid phase extraction ultra‐performance liquid chromatography tandem mass spectrometry was established for detecting four kinds of triazine herbicide residues in tobacco. The recovery rate of terbuthylazine, simetryn, atrazine, and prometryn in tobacco was 84.03–119.05%, and the relative standard deviation was 0.35–10.12%.  相似文献   

16.
Atomic spectroscopy is the most popular approach to determine the presence of heavy metals in the environment. Heavy metals are potentially toxic and have various negative effects on many living organisms, including humans. With the rapid increase in the variety of industries and human activities, large amounts of heavy metals are released into the atmosphere, water, and soil. Heavy metal analysis of environmental samples is very important for determining the exposure limits. Environmental samples are highly complex matrices, and various sample preparation techniques have been developed for the extraction of heavy metals from them, including magnetic solid-phase extraction (MSPE). The use of MSPE in heavy metal analysis has recently gained significant attention owing to a number of advantages. MSPE technique overcomes main issues such as phase separation, handling, and column packing. The use of magnetic adsorbents in sample preparation has grown over the past few years, making MSPE a promising technique for sample preparation. The objective of this review article is to provide the latest applications of MSPE coupled with atomic spectroscopy for heavy metal determination in environmental samples. In addition, new magnetic adsorbents and their analytical merits are emphasized.  相似文献   

17.
Diallyldimethylammonium chloride modified magnetic nanoparticles were synthesized by the “thiol‐ene” click chemistry reaction. Diallyldimethylammonium chloride rendered the material plenty of quaternary ammonium groups, and thus the excellent aqueous dispersibility and anion‐exchange capability. The novel material was then used as the magnetic solid‐phase extraction sorbent to extract eight non‐steroidal anti‐inflammatory drugs from water samples. Combined with high‐performance liquid chromatography and ultraviolet detection, under the optimal conditions, the developed method exhibited wide linearity ranges (1–1000, 2–1000, and 5–1000 ng/mL) with recoveries of 88.0–108.6% and low limits of detection (0.3–1.5 ng/mL). Acceptable precision was obtained with satisfactory intra‐ and inter‐day relative standard deviations of 0.4–4.4% (= 3) and 1.1–5.5% (= 3), respectively. Batch‐to‐batch reproducibility was acceptable with relative standard deviations <9.7%. The hydrophilic magnetic nanoparticle featured with quaternary ammonium groups showed high analytical potential for acidic analytes in environmental water samples.  相似文献   

18.
In this study, the magnetic materials known as polymerized ionic liquid@3‐(trimethoxysilyl)propyl methacrylate@Fe3O4 nanoparticles were synthesized and utilized as potential adsorbents. First, these nanoparticles were applied to the analysis of sulfonamides and quinolones present in different water samples using magnetic solid phase extraction and high‐performance liquid chromatography. Under optimized conditions, the developed method showed excellent detection sensitivity, with limits of detection (S/N = 3) and quantification limits (S/N = 10) within 0.2–1.0 and 0.8–3.4 μg/L, respectively. The spiked recoveries of the SAs and QNs in environmental water samples ranged from 83.5 to 103.0%, with RSDs of less than 4.5%. In addition, the adsorbents effectively removed sulfamethoxazole and ofloxacin present in existing aquatic environments. The adsorption kinetics and isotherms of sulfamethoxazole and ofloxacin on the magnetic adsorbents were studied to assess removal performance. The results indicate that the adsorption process follows a pseudo‐second‐order mechanism, which reveals that the sorption mechanism is the rate‐limiting step and produces high qmax values (sulfamethoxazole = 70.35 mg/g and ofloxacin = 48.95 mg/g), thus demonstrating the enormous adsorption capacity of these magnetic adsorbents.  相似文献   

19.
The high selectivity of element-specific atomic emission detection has proven suitable for screening analysis of plant foodstuffs for pesticide residues by capillary gas chromatography, especially for those foodstuffs which contain high levels of matrix compounds. The elemental composition of a peak can, furthermore, be examined by looking at the partial emission spectra recorded during a GC run. This instrumental feature prevents false positive signal interpretation as a result of high concentration levels of eluting matrix compounds.  相似文献   

20.
A fast multi‐residue screening method for determining pesticides in tea is described. Pesticides are extracted from tea with acetone and methylene chloride, then enriched and cleaned up with solid phase extraction (SPE) prior to gas chromatographic determination. The fast screening is achieved by a gas chromatograph system equipped with dual‐column, dual‐tower auto‐sampler and both electron capture detector (ECD) and flame photometric detector (FPD). Optimal conditions are investigated for the prospective pesticides including column selection, detection mode, the retention behaviors, quantitative calibration, as well as the recoveries and repeatability of pesticides from tea samples. Under the optimal conditions, with the FPD‐P detector accompanied CP‐SIL 13CB column, 48 pesticides can be separated well and detected within 38 min; and with a DB‐5 column, 35 ECD‐detectable pesticides can be separated and detected within 46 min. The recoveries of 84 pesticides in tea samples are 65–120% with 0.34–16% RSD for spiking 0.02–3.0 mg/kg standard species. Because of the thermal instability of most pesticides, direct cold extraction of pesticides from a tea sample is recommended. The proposed method provided a very fast and efficient procedure to screen 84 pesticides from a complicated tea sample matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号