首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A dispersive liquid–liquid microextraction method for the simultaneous determination of 11 pharmaceuticals has been developed. The method is based on a microextraction procedure applied to wastewater samples from different regions of Hungary followed by high‐performance liquid chromatography with mass spectrometry. The effect of the nature of the extractant, dispersive solvent, different additives, and extraction time were examined on the extraction efficiently of the dispersive liquid–liquid microextraction method. Under optimal conditions, the linearity for determining the pharmaceuticals was in the range of 1–500 ng/mL, with the correlation coefficients ranging from 0.9922 to 0.9995. The limits of detection and limits of quantification were in the range of 0.31–6.65 and 0.93–22.18 ng/mL, respectively.  相似文献   

2.
Matrix solid‐phase dispersion combined with dispersive liquid–liquid microextraction has been developed as a new sample pretreatment method for the determination of four sulfonylurea herbicides (chlorsulfuron, bensulfuron‐methyl, chlorimuron‐ethyl, and pyrazosulfuron) in tea by high‐performance liquid chromatography with diode array detection. The extraction and cleanup by matrix solid‐phase dispersion was carried out by using CN‐silica as dispersant and carbon nanotubes as cleanup sorbent eluted with acidified dichloromethane. The eluent of matrix solid‐phase dispersion was evaporated and redissolved in 0.5 mL methanol, and used as the dispersive solvent of the following dispersive liquid–liquid microextraction procedure for further purification and enrichment of the target analytes before high‐performance liquid chromatography analysis. Under the optimum conditions, the method yielded a linear calibration curve in the concentration range from 5.0 to 10 000 ng/g for target analytes with a correlation coefficients (r2) ranging from 0.9959 to 0.9998. The limits of detection for the analytes were in the range of 1.31–2.81 ng/g. Recoveries of the four sulfonylurea herbicides at two fortification levels were between 72.8 and 110.6% with relative standard deviations lower than 6.95%. The method was successfully applied to the analysis of four sulfonylurea herbicides in several tea samples.  相似文献   

3.
In situ ionic‐liquid‐dispersive liquid–liquid microextraction was introduced for extracting Sudan dyes from different liquid samples followed by detection using ultrafast liquid chromatography. The extraction and metathesis reaction can be performed simultaneously, the extraction time was shortened notably and higher enrichment factors can be obtained compared with traditional dispersive liquid–liquid microextraction. When the extraction was coupled with ultrafast liquid chromatography, a green, convenient, cheap, and efficient method for the determination of Sudan dyes was developed. The effects of various experimental factors, including type of extraction solvent, amount of 1‐hexyl‐3‐methylimidazolium chloride, ratio of ammonium hexafluorophosphate to 1‐hexyl‐3‐methylimidazolium chloride, pH value, salt concentration in sample solution, extraction time and centrifugation time were investigated and optimized for the extraction of four kinds of Sudan dyes. The limits of detection for Sudan I, II, III, and IV were 0.324, 0.299, 0.390, and 0.655 ng/mL, respectively. Recoveries obtained by analyzing the seven spiked samples were between 65.95 and 112.82%. The consumption of organic solvent (120 μL acetonitrile per sample) was very low, so it could be considered as a green analytical method.  相似文献   

4.
Sun protection is an important part of our lives. UV filters are widely used to absorb solar radiation in sunscreens. However, excess UV filters constitute persistent groups of organic micropollutants present in the environment. An environmentally friendly ionic‐liquid‐based up‐and‐down shaker‐assisted dispersive liquid?liquid microextraction device combined with ultra‐performance liquid chromatography coupled with photodiode‐array detection has been developed to preconcentrate three UV filters (benzophenone, 2‐hydroxy‐4‐methoxybenzophenone, 2,2′‐dihydroxy‐4‐methoxybenzophenone) from field water samples. In this method, the optimal conditions for the proposed extraction method were: 40 μL [C8MIM][PF6] as extraction solvent and 200 μL methanol as disperser solvent were used to extract the UV filters. After up‐and‐down shaking for 3 min, the aqueous solution was centrifuged at 5000 rpm speed, then using microtube to collect the settled extraction solvent and using ultra‐performance liquid chromatography for further analysis. Quantification results indicated that the linear range was 2–1000 ng/mL. The LOD of this method was in the range 0.2–1.3 ng/mL with r2 ≥ 0.9993. The relative recovery in studies of different types of field water samples was in the range 92–120%, and the RSD was 2.3–7.1%. The proposed method was also applied to the analysis of field samples.  相似文献   

5.
The determination of 15 pyrethroids in soil and water samples was carried out by gas chromatography with mass spectrometry. Compounds were extracted from the soil samples (4 g) using solid–liquid extraction and then salting‐out assisted liquid–liquid extraction. The acetonitrile phase obtained (0.8 mL) was used as a dispersant solvent, to which 75 μL of chloroform was added as an extractant solvent, submitting the mixture to dispersive liquid–liquid microextraction. For the analysis of water samples (40 mL), magnetic solid‐phase extraction was performed using nanocomposites of magnetic nanoparticles and multiwalled carbon nanotubes as sorbent material (10 mg). The mixture was shaken for 45 min at room temperature before separation with a magnet and desorption with 3 mL of acetone using ultrasounds for 5 min. The solvent was evaporated and reconstituted with 100 μL acetonitrile before injection. Matrix‐matched calibration is recommended for quantification of soil samples, while water samples can be quantified by standards calibration. The limits of detection were in the range of 0.03–0.5 ng/g (soil) and 0.09–0.24 ng/mL (water), depending on the analyte. The analyzed environmental samples did not contain the studied pyrethroids, at least above the corresponding limits of detection.  相似文献   

6.
A method based on ultrasound‐assisted liquid–liquid extraction and high‐performance liquid chromatography has been optimized for the determination of six polybrominated diphenyl ether congeners. The optimal condition relevant to the extraction was first investigated, more than 98.7 ± 0.7% recovery was achieved with dichloromethane as extractant, 5 min extraction time, and three cycles of ultrasound‐assisted liquid–liquid extraction. Then multiple function was employed to optimize polybrominated diphenyl ether detection conditions with overall resolution and chromatography signal area as the responses. The condition chosen in this experiment was methanol/water 93:7 v/v, flow rate 0.80 mL/min, column temperature 30.0°C. The optimized technique revealed good linearity (R2 > 0.9962 over a concentration range of 1–100 μg/L) and repeatability (relative standard deviation < 6.3%). Furthermore, the detection limit (S/N = 3) of the method were ranged from 0.02 to 0.13 μg/L and the quantification limit (S/N = 10) ranged from 0.07 to 0.35 μg/L. Finally, the proposed method was applied to spiked samples and satisfactory results were achieved. These results indicate that ultrasound‐assisted liquid–liquid extraction coupled with high‐performance liquid chromatography was effective to identify and quantify the complex polybrominated diphenyl ethers in effluent samples.  相似文献   

7.
In this work, two disperser‐free microextraction methods, namely, air‐agitated liquid–liquid microextraction and ultrasound‐assisted emulsification microextraction are compared for the determination of a number of polycyclic aromatic hydrocarbons in aqueous samples, followed by gas chromatography with flame ionization detection. The effects of various experimental parameters upon the extraction efficiencies of both methods are investigated. Under the optimal conditions, the enrichment factors and limits of detection were found to be in the ranges of 327–773 and 0.015–0.05 ng/mL for air‐agitated liquid–liquid microextraction and 406–670 and 0.015–0.05 ng/mL for ultrasound‐assisted emulsification microextraction, respectively. The linear dynamic ranges and extraction recoveries were obtained to be in the range of 0.05–120 ng/mL (R2 ≥ 0.995) and 33–77% for air‐agitated liquid–liquid microextraction and 0.05–110 ng/mL (R2 ≥ 0.994) and 41–67% for ultrasound‐assisted emulsification microextraction, respectively. To investigate this common view among some people that smoking hookah is healthy due to the passage of smoke through the hookah water, samples of both the hookah water and hookah smoke were analyzed.  相似文献   

8.
A new version of dispersive liquid–liquid microextraction, namely, cyclodextrin‐assisted dispersive liquid–liquid microextraction, with subsequent sweeping micellar electrokinetic chromatography has been developed for the preconcentration and sensitive detection of carbamazepine and clobazam. α‐Cyclodextrin and chloroform were used as the dispersive agent and extraction solvent, respectively. After the extraction, carbamazepine and clobazam were analyzed using micellar electrokinetic chromatography with ultraviolet detection. The detection sensitivity was further enhanced using the sweeping technique. Under optimal extraction and stacking conditions, the calibration curves of carbamazepine and clobazam were linear over a concentration range of 2.0–200.0 ng/mL. The method detection limits at a signal‐to‐noise ratio of 3 were 0.6 and 0.5 ng/mL with sensitivity enhancement factors of 3575 and 4675 for carbamazepine and clobazam, respectively. This developed method demonstrated high sensitivity enhancement factors and was successfully applied to the determination of carbamazepine and clobazam in human urine samples. The precision and accuracy for urine samples were less than 4.2 and 6.9%, respectively.  相似文献   

9.
A simple technique for the collection of an extraction solvent lighter than water after dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography with ultraviolet detection was developed for the determination of four paraben preservatives in aqueous samples. After the extraction procedure, low‐density organic solvent together with some little aqueous phase was separated by using a disposable glass Pasteur pipette. Next, the flow of the aqueous phase was stopped by successive dipping the capillary tip of the pipette into anhydrous Na2SO4. The upper organic layer was then removed simply with a microsyringe and injected into the high‐performance liquid chromatography system. Experimental parameters that affect the extraction efficiency were investigated and optimized. Under optimal extraction conditions, the extraction recoveries ranged from 25 to 86%. Good linearity with coefficients with the square of correlation coefficients ranging from 0.9984 to 0.9998 was observed in the concentration range of 0.001–0.5 μg/mL. The relative standard deviations ranged from 4.1 to 9.3% (n = 5) for all compounds. The limits of detection ranged from 0.021 to 0.046 ng/mL. The method was successfully applied for the determination of parabens in tap water and fruit juice samples and good recoveries (61–108%) were achieved for spiked samples.  相似文献   

10.
A simple and sensitive method for the simultaneous determination of eight parabens in human plasma and urine samples was developed. The samples were preconcentrated using dispersive liquid–liquid microextraction based on the solidification of floating organic drops and determined by high‐performance liquid chromatography with ultraviolet detection. The influence of variables affecting the extraction efficiency was investigated and optimized using Placket–Burman design and Box–Behnken design. The optimized values were: 58 μL of 1‐decanol (as extraction solvent), 0.65 mL methanol (as disperser solvent), 1.5% w/v NaCl in 5.0 mL of sample solution, pH 10.6, and 4.0 min centrifugation at 4000 rpm. The extract was injected into the high‐performance liquid chromatography system for analysis. Under the optimum conditions, the linear ranges for eight parabens in plasma and urine were 1.0–1000 ng/mL, with correlation coefficients above 0.994. The limit of detection was 0.2–0.4 and 0.1–0.4 ng/mL for plasma and urine samples, respectively. Relative recoveries were between 80.3 and 110.7%, while relative standard deviations were less than 5.4%. Finally, the method was applied to analyze the parabens in 98 patients of primary breast cancer. Results showed that parabens existed widely, at least one paraben detected in 96.9% (95/98) of plasma samples and 98.0% (96/98) of urine samples.  相似文献   

11.
A novel dispersive solid‐phase extraction combined with vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet was developed for the determination of eight benzoylurea insecticides in soil and sewage sludge samples before high‐performance liquid chromatography with ultraviolet detection. The analytes were first extracted from the soil and sludge samples into acetone under optimized pretreatment conditions. Clean‐up of the extract was conducted by dispersive solid‐phase extraction using activated carbon as the sorbent. The vortex‐assisted dispersive liquid–liquid microextraction based on solidification of floating organic droplet procedure was performed by using 1‐undecanol with lower density than water as the extraction solvent, and the acetone contained in the solution also acted as dispersive solvent. Under the optimum conditions, the linearity of the method was in the range 2–500 ng/g with correlation coefficients (r) of 0.9993–0.9999. The limits of detection were in the range of 0.08–0.56 ng/g. The relative standard deviations varied from 2.16 to 6.26% (n = 5). The enrichment factors ranged from 104 to 118. The extraction recoveries ranged from 81.05 to 97.82% for all of the analytes. The good performance has demonstrated that the proposed methodology has a strong potential for application in the multiresidue analysis of complex matrices.  相似文献   

12.
Solid‐phase extraction coupled with dispersive liquid–liquid microextraction was developed as an ultra‐preconcentration method for the determination of four organophosphorus pesticides (isocarbophos, parathion‐methyl, triazophos and fenitrothion) in water samples. The analytes considered in this study were rapidly extracted and concentrated from large volumes of aqueous solutions (100 mL) by solid‐phase extraction coupled with dispersive liquid–liquid microextraction and then analyzed using high performance liquid chromatography. Experimental variables including type and volume of elution solvent, volume and flow rate of sample solution, salt concentration, type and volume of extraction solvent and sample solution pH were investigated for the solid‐phase extraction coupled with dispersive liquid–liquid microextraction with these analytes, and the best results were obtained using methanol as eluent and ethylene chloride as extraction solvent. Under the optimal conditions, an exhaustive extraction for four analytes (recoveries >86.9%) and high enrichment factors were attained. The limits of detection were between 0.021 and 0.15 μg/L. The relative standard deviations for 0.5 μg/L of the pesticides in water were in the range of 1.9–6.8% (n = 5). The proposed strategy offered the advantages of simple operation, high enrichment factor and sensitivity and was successfully applied to the determination of four organophosphorus pesticides in water samples.  相似文献   

13.
Vortex‐assisted liquid–liquid microextraction followed by high‐performance liquid chromatography with UV detection was applied to determine Isocarbophos, Parathion‐methyl, Triazophos, Phoxim and Chlorpyrifos‐methyl in water samples. 1‐Bromobutane was used as the extraction solvent, which has a higher density than water and low toxicity. Centrifugation and disperser solvent were not required in this microextraction procedure. The optimum extraction conditions for 15 mL water sample were: pH of the sample solution, 5; volume of the extraction solvent, 80 μL; vortex time, 2 min; salt addition, 0.5 g. Under the optimum conditions, enrichment factors ranging from 196 to 237 and limits of detection below 0.38 μg/L were obtained for the determination of target pesticides in water. Good linearities (r > 0.9992) were obtained within the range of 1–500 μg/L for all the compounds. The relative standard deviations were in the range of 1.62–2.86% and the recoveries of spiked samples ranged from 89.80 to 104.20%. The whole proposed methodology is simple, rapid, sensitive and environmentally friendly for determining traces of organophosphorus pesticides in the water samples.  相似文献   

14.
Determination of methamphetamine in forensic laboratories is a major issue due to its health and social harm. In this work, a simple, sensitive, and environmentally friendly method based on ionic liquid dispersive liquid–liquid microextraction combined with high‐performance liquid chromatography was established for the analysis of methamphetamine in human urine. 1‐Octyl‐3‐methylimidazolium hexafluorophosphate with the help of disperser solvent methanol was selected as the microextraction solvent in this process. Various parameters affecting the extraction efficiency of methamphetamine were investigated systemically, including extraction solvent and its volume, disperser solvent and its volume, sample pH, extraction temperature, and centrifugal time. Under the optimized conditions, a good linearity was obtained in the concentration range of 10–1000 ng/mL with determination coefficient >0.99. The limit of detection calculated at a signal‐to‐noise ratio of 3 was 1.7 ng/mL and the relative standard deviations for six replicate experiments at three different concentration levels of 100, 500, and 1000 ng/mL were 6.4, 4.5, and 4.7%, respectively. Meanwhile, up to 220‐fold enrichment factor of methamphetamine and acceptable extraction recovery (>80.0%) could be achieved. Furthermore, this method has been successfully employed for the sensitive detection of a urine sample from a suspected drug abuser.  相似文献   

15.
A new and fast sample preparation technique based on three‐phase hollow fiber liquid‐phase microextraction with a magnetofluid was developed and successfully used to quantify the aristolochic acid I (AA‐I) and AA‐II in plasma after oral administration of Caulis akebiae extract. Analysis was accomplished by reversed‐phase high‐performance liquid chromatography with fluorescence detection. Parameters that affect the hollow fiber liquid‐phase microextraction processes, such as the solvent type, pH of donor and acceptor phases, content of magnetofluid, salt content, stirring speed, hollow fiber length, extraction temperature, and extraction time, were investigated and optimized. Under the optimized conditions, the preconcentration factors for AA‐I and AA‐II were >627. The calibration curve for two AAs was linear in the range of 0.1–10 ng/mL with the correlation coefficients >0.9997. The intraday and interday precision was <5.71% and the LODs were 11 pg/mL for AA‐I and 13 pg/mL for AA‐II (S/N = 3). The separation and determination of the two AAs in plasma after oral administration of C. akebiae extract were completed by the validated method.  相似文献   

16.
A novel and reliable method for determination of five triazole fungicide residues (triadimenol, tebuconazole, diniconazole, flutriafol, and hexaconazol) in traditional Chinese medicine samples was developed using dispersive solid‐phase extraction combined with ultrasound‐assisted dispersive liquid–liquid microextraction before ultra‐high performance liquid chromatography with tandem mass spectrometry. The clean up of the extract was conducted using dispersive solid‐phase extraction by directly adding sorbents into the extraction solution, followed by shaking and centrifugation. After that, a mixture of 400 μL trichloromethane (extraction solvent) and 0.5 mL of the above supernatant was injected rapidly into water for the dispersive liquid–liquid microextraction procedure. The factors affecting the extraction efficiency were optimized. Under the optimum conditions, the calibration curves showed good linearity in the range of 2.0–400 (tebuconazole, diniconazole, and hexaconazole) and 4.0–800 ng/g (triadimenol and flutriafol) with the regression coefficients higher than 0.9958. The limit of detection and limit of quantification for the present method were 0.5–1.1 and 1.8–4.0 ng/g, respectively. The recoveries of the target analytes ranged from 80.2 to 103.2%. The proposed method has been successfully applied to the analysis of five triazole fungicides in traditional Chinese medicine samples, and satisfactory results were obtained.  相似文献   

17.
Chloropropanols are processing toxicants with a potential risk to human health due to the increased intake of processed foods. A rapid and efficient method for the determination of three chloropropanols in human plasma was developed using ultrasound‐assisted dispersive liquid–liquid microextraction. The method involved derivatization and extraction in one step followed by gas chromatography with tandem mass spectrometry analysis. Parameters affecting extraction, such as sample pH, ionic strength, type and volume of dispersive and extraction solvents were optimized by response surface methodology using a pentagonal design. The linear range of the method was 5–200 ng/mL for 1,3‐dichloro‐2‐propanol, 10–200 ng/mL for 2,3‐dichloro‐2‐propanol and 10–400 ng/mL for 3‐chloropropane‐1,2‐diol with the determination coefficients between 0.9989 and 0.9997. The limits of detection were in the range of 0.3–3.2 ng/mL. The precision varied from 1.9 to 10% relative standard deviation (n = 9). The recovery of the method was between 91 and 101%. Advantages such as low consumption of organic solvents and short time of analysis make the method suitable for the biomonitoring of chloropropanols.  相似文献   

18.
A simple, rapid, sensitive, and environmentally friendly method, based on modified dispersive liquid–liquid microextraction coupled with high‐performance liquid chromatography was developed for the simultaneous determination of five biogenic amines in fermented food samples. Biogenic amines were derivatized with 9‐fluorenylmethyl chloroformate, extracted by vortex‐assisted surfactant‐enhanced emulsification liquid–liquid microextraction, and then analyzed by high‐performance liquid chromatography. Five biogenic amine compounds were separated within 30 min using a C18 column and gradient elution with acetonitrile and 1% acetic acid. Factors influencing the derivatization and extraction efficiency such as type and volume of extraction solvent, type, and concentration of surfactant, pH, salt addition, and vortex time were optimized. Under the optimum conditions, the method provided the enrichment factors in the range of 161–553. Good linearity was obtained from 0.002–0.5 mg/L for cadaverine and tyramine, 0.003–1 mg/L for tryptamine and histamine, and 0.005–1 mg/L for spermidine with coefficient of determination (R2) > 0.992. The limits of detection ranged from 0.0010 to 0.0026 mg/L. The proposed method was successfully applied to analysis of biogenic amines in fermented foods such as fermented fish (plaa‐som), wine and beer where good recoveries were obtained in the range of 83.2–112.5%  相似文献   

19.
Metal–organic frameworks‐5 (MOF‐5) was explored as a template to prepare porous carbon due to its high surface area, large pore volume, and permanent nanoscale porosity. Magnetic porous carbon, Co@MOF‐5‐C, was fabricated by the one‐step direct carbonization of Co‐doped MOF‐5. After carbonization, the magnetic cobalt nanoparticles are well dispersed in the porous carbon matrix, and Co@MOF‐5‐C displays strong magnetism (with the saturation magnetization intensity of 70.17emu/g), high‐specific surface area, and large pore volume. To evaluate its extraction performance, the Co@MOF‐5‐C was applied as an adsorbent for the magnetic solid‐phase extraction of endocrine disrupting chemicals, followed by their analysis with high‐performance liquid chromatography. The developed method exhibits a good linear response in the range of 0.5–100 ng/mL for pond water and 1.0–100 ng/mL for juice samples. The limits of detection (S/N  = 3) for the analytes were in the range of 0.1–0.2 ng/mL.  相似文献   

20.
A new simple and rapid pretreatment method for simultaneous determination of 19 sulfonamides in pork samples was developed through combining the QuEChERS method with dispersive liquid–liquid microextraction followed by ultra‐high performance liquid chromatography with tandem mass spectrometry. The sample preparation involves extraction/partitioning with QuEChERS method followed by dispersive liquid–liquid microextraction using tetrachloroethane as extractive solvent and the acetonitrile extract as dispersive solvent that obtained by QuEChERS. The enriched tetrachloroethane organic phase by dispersive liquid–liquid microextraction was evaporated, reconstituted with 100 μL acetonitrile/water (1:9 v/v) and injected into an ultra‐high performance liquid chromatography with a mobile phase composed of acetonitrile and 0.1% v/v formic acid under gradient elution and separated using a BHE C18 column. Various parameters affecting the extraction efficiency were investigated. Matrix‐matched calibration curves were established. Good linear relationships were obtained for all analytes in a range of 2.0–100 μg/kg and the limits of detection were 0.04–0.49 μg/kg. Average recoveries at three spiking levels were in the range of 78.3–106.1% with relative standard deviations less than 12.7% (n = 6). The developed method was successfully applied to determine sulfonamide residues in pork samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号