首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The analysis of amino acids presents significant challenges to contemporary analytical separations. The present paper investigates the possibility of retention prediction in hydrophilic interaction chromatography (HILIC) gradient elution based on the analytical solution of the fundamental equation of the multilinear gradient elution derived for reversed‐phase systems. A simple linear dependence of the logarithm of the solute retention (ln k) upon the volume fraction of organic modifier (φ) in a binary aqueous‐organic mobile is adopted. Utility of the developed methodology was tested on the separation of a mixture of 21 amino acids carried out with 14 different gradient elution programs (from simple linear to multilinear and curved shaped) using ternary eluents in which a mixture of methanol and water (1:1, v/v) was the strong eluting member and acetonitrile was the weak solvent. Starting from at least two gradient runs, the prediction of solute retention obtained under all the rest gradients was excellent, even when curved gradient profiles were used. Development of such methodologies can be of great interest for a wide range of applications.  相似文献   

2.
The retention behaviour of amino acids was studied in hydrophilic LC on zwitterionic stationary phases. Evaluation of the influences of acetonitrile/water content, ammonium acetate (NH4Ac) concentration and mobile phase pH values was performed. Fourteen amino acids were tested and they were all retained to varying extents, with poorer retention in high water content eluents. The linear relationship between the logarithm of retention factor and log(water content) indicated that adsorption dominated or at least was partly involved in the separation mechanism. Electrostatic and hydrophilic interactions also contributed to the retention of these amino acids under different separation conditions with various mobile phase pH values and NH4Ac concentrations. Thus, the overall retention mechanism could be explained as a combination of adsorption, electrostatic and hydrophilic interactions. The magnitude and contribution of each mechanism is dependent on the nature of the analyte and the separation conditions applied.  相似文献   

3.
More and more polar stationary phases have become available for the separation of small polar compounds in the past decade as hydrophilic interaction chromatography (HILIC) continues to find applications in new fields (e.g., metabolomics and proteomics). Bare silica phases remain popular, especially in the bio-analytical area. A wide range of functional groups (e.g., amino, amide, diol, sulfobetaine, and triazole) have been employed as polar stationary phases for HILIC separation. This review provides a survey of the popular stationary phases commercially available and discusses the retention and selectivity characteristics of the polar stationary phases in HILIC. The purpose of the review is not to provide a comprehensive overview of literature reports, but rather focuses on findings that demonstrate retention and selectivity of the polar stationary phases in HILIC.  相似文献   

4.
This review summarizes the recent advances in the analysis of amino acids, peptides, and proteins using hydrophilic interaction chromatography. Various reports demonstrate the successful analysis of amino acids under such conditions. However, a baseline resolution of the 20 natural amino acids has not yet been published and for this reason, there is often a need to use mass spectrometry for detection to further improve selectivity. Hydrophilic interaction chromatography is also recognized as a powerful technique for peptide analysis, and there are a lot of papers showing its applicability for proteomic applications (peptide mapping). It is expected that its use for peptide mapping will continue to grow in the future, particularly because this analytical strategy can be combined with reversed‐phase liquid chromatography, in a two‐dimensional setup, to reach very high resolving power. Finally, the interest in hydrophilic interaction chromatography for intact proteins analysis is less evident due to possible solubility issues and a lack of suitable hydrophilic interaction chromatography stationary phases. To date, it has been successfully employed only for the characterization of membrane proteins, histones, and the separation of glycosylated isoforms of an intact glycoprotein. From our point of view, the number of hydrophilic interaction chromatography columns compatible with intact proteins (higher upper temperature limit, large pore size, etc.) is still too limited.  相似文献   

5.
The determination of catecholamines in urine was investigated using hydrophilic interaction chromatography (HILIC) as an alternative to the commonly used reversed-phase (RP) method. A number of different approaches were explored, including per-aqueous liquid chromatography (PALC), and HILIC using bare silica, bonded amide and zwitterionic phases. The bonded phases gave superior results in terms of both peak shape and selectivity. The mechanism of the HILIC separation was investigated particularly with respect to the contribution of ion exchange to retention. The electrochemical detection of catecholamines was studied and optimised in typical HILIC mobile phases that contain high concentrations of acetonitrile. HILIC offered a number of advantages over the conventional RP approach, giving good retention of the solutes without use of ion pair reagents, the absence of which also would facilitate detection by mass spectrometry. HILIC used in conjunction with solid phase extraction based on RP also gives orthogonal separation mechanisms in the cleanup and analysis steps. Furthermore, good recoveries from the cleanup stage were obtained, as high concentrations of acetonitrile can be used as eluting solvent that are fully compatible with HILIC, and lipophilic impurities are eluted close to the void volume of the HILIC column.  相似文献   

6.
糖类化合物亲水作用色谱保留行为评价   总被引:2,自引:0,他引:2  
傅青  王军  梁图  徐晓勇  金郁 《色谱》2013,31(11):1051-1056
以糖类化合物为研究对象,系统评价了其在亲水模式下的色谱保留行为。分别考察了流动相、固定相和缓冲盐等对糖类化合物保留的影响,建立了糖类化合物在亲水模式下的保留方程。结果表明,糖类化合物随着流动相中乙腈比例的降低,保留时间减小;随着缓冲盐浓度的增加,保留时间增加;同时,糖类化合物的保留行为还会受到有机溶剂种类和固定相类型的影响;其保留行为可使用顶替吸附-液相相互作用模型定量描述。将该模型进一步用于实际样品中糖类化合物保留行为的预测,获得了较好的实验结果,预测保留时间与实测保留时间的相对误差小于0.3%。对糖类化合物亲水模式下的保留行为进行了系统的评价和定量描述,该研究结果将有助于糖类化合物亲水作用色谱分离方法的发展。  相似文献   

7.
The influence of the mobile phase and temperature, on the retention behavior of seven aliphatic acids (pyruvic, gluconic, 2‐oxoglutaric, tartaric, malic, oxalic, and citric acid) in hydrophilic interaction liquid chromatography on zwitterionic stationary phases with sulfobetaine and phosphorylcholine ligands is investigated. In agreement with the van't Hoff model, most acids show linear ln k versus 1/T plots. However, the retention of structurally symmetrical oxalic and tartaric dicarboxylic acids is almost independent of temperature, or slightly increases at rising temperature. The experimental parameters of the van't Hoff plots suggest positive entropic contributions to the retention of these symmetrical acids, possibly connected with changes in molecular symmetry on their adsorption. The type of the zwitterionic stationary phase and the mobile phase composition (the molar concentration of acetate buffer and the volume fraction of acetonitrile) affect the retention and the selectivity of the separation of the acids.  相似文献   

8.
The retention behavior of aromatic hydrocarbons and dansylamino acids on cation-exchangers modified with alkylammonium ions has been examined by microcolumn liquid chromatography. Several parameters affected the retention of analytes, involving concentration of the modifier in the mobile phase, its alkyl chain length and mobile phase composition. Stationary phases modified with a reagent having longer alkyl chains achieved better column efficiency.  相似文献   

9.
A sensitive, reproducible, and rapid method was developed for the simultaneous determination of underivatized amino acids (aspartate, serine, glycine, alanine, methionine, leucine, tyrosine, and tryptophan) and neurotransmitters (glutamate and γ‐aminobutyric acid) in plasma samples using hydrophilic interaction liquid chromatography coupled to triple quadrupole tandem mass spectrometry. The plasma concentrations of amino acids and neurotransmitters obtained from 35 schizophrenic patients in treatment with clozapine (27 patients) and olanzapine (eight patients) were compared with those obtained from 38 healthy volunteers to monitor the effectiveness of treatment. The chromatographic conditions separated ten target compounds within 3 min. This method presented linear ranges that varied from (lower limit of quantification: 9.7–13.3 nmol/mL) to (upper limit of quantification: 19.4–800 nmol/mL), intra‐ and interassay precision with coefficients of variation lower than 10%, and relative standard error values of the accuracy ranged from –2.1 to 9.9%. The proposed method appropriately determines amino acids and neurotransmitters in plasma from schizophrenic patients. Compared with the control group (healthy volunteers), the plasma levels of methionine in schizophrenic patients treated with olanzapine are statistically significantly higher. Moreover, schizophrenic patients treated with clozapine tend to have increased plasma levels of glutamate.  相似文献   

10.
Hydrophilic interaction chromatography (HILIC) is a liquid chromatographic separation mechanism commonly used for polar biological molecules. The use of enhanced-fluidity liquid chromatography (EFLC) with mixtures of methanol/water/carbon dioxide is compared to acetonitrile/water mobile phases for the separation of nucleosides and nucleotides under HILIC conditions. Enhanced-fluidity liquid chromatography involves using common mobile phases with the addition of substantial proportions of a dissolved gas which provides greater mobile phase diffusivity and lower viscosity. The impact of varying several experimental parameters, including temperature, addition of base, salt, and CO2 was studied to provide optimized HILIC separations. Each of these parameters plays a key role in the retention of the analytes, which demonstrates the complexity of the retention mechanism in HILIC. The tailing of phosphorylated compounds was overcome with the use of phosphate salts and the addition of a strong base; efficiency and peak asymmetry were compared with the addition of either triethylamine (TEA), 1,4-diazabicyclo [2.2.2] octane (DABCO) or 1,5-diazabicyclo [4.3.0] non-5-ene (DBN). DBN and DABCO both led to increased efficiency and lower peak asymmetry; DBN provided the best results. Sodium chloride and carbon dioxide were added to enhance the selectivity between the analytes, giving a successful isocratic separation of nucleosides and nucleotides within 8 min. The retention mechanism involved in EFL-HILIC was explored by varying the temperature and the mole fraction of CO2. These studies showed that partitioning was the dominant mechanism. The thermodynamics study confirmed that the solvent strength is maintained in EFLC and that a change in entropy was mainly responsible for the improved selectivity. The selectivity using methanol/water/carbon dioxide varied greatly compared to that obtained with acetonitrile/water. Finally while this study highlights the optimization of EFL-HILIC for the separation of nucleosides and nucleotides under isocratic conditions, this is also an example of the broad range of polarities of compounds that EFL-HILIC can separate.  相似文献   

11.
Summary Retention prediction of o-phthalaldehyde amino acid derivatives in reversed-phase liquid chromatography has been investigated. The retention of all derivatives could be predicted within about 10% relative error under the appropriate separation conditions in both isocratic and gradient-elution modes.  相似文献   

12.
Summary The effects of eluent pH and organic modifier concentration on the capacity factor (k) and selectivity of dipeptide isomers were investigated. It has been observed that the variation in the logarithm of the capacity factor of the dipeptide isomers is linearly dependent on the organic modifier concentration (Cb), however, the selectivity is almost independent of it. Both capacity factor and selectivity were seriously affected by the pH of the eluent. Both the capacity factor and the intercept of the ln k vs. Cb plot increased with increasing van der Waals volume of the non-polar amino acid subunit of the dipeptides.  相似文献   

13.
Summary Retention prediction of small peptides (up to four residues) in reversed-phase liquid chromatography has been investigated, considering the contributions of side chains in each position to the peptide retention. In isocratic elution the retention of peptides could be predicted within about 8% relative error.  相似文献   

14.
A novel method was developed for the separation of proanthocyanidins (PAs; oligomeric flavan-3-ols) by hydrophilic interaction chromatography (HILIC) using an amide-silica column eluting with an aqueous acetonitrile mobile phase. The best separation was achieved with a linear gradient elution of acetonitrile-water at ratios of 9:1 to 5:5 (v/v) for 60 min at a flow rate of 1.0 ml/min. Under these HPLC conditions, a mixture of natural oligomeric PAs (from apple) was separated according to degree of polymerization (DP) up to decamers. The DP of each separated oligomer was confirmed by LC/electrospray ionization MS. In further HILIC separation studies of 15 different flavan-3-ol and oligomeric PA (up to pentamer) standards with an isocratic elution of acetonitrile-water (84:16), a high correlation was observed between the logarithm of retention factors (log k) and the number of hydroxyl groups in their structures. The coefficient of this correlation (r2=0.9501) was larger than the coefficient (r2=0.7949) obtained from the correlation between log k and log P(o/w) values. These data reveal that two effects, i.e. hydrogen bonding between the carbamoyl terminal on the column and the hydroxyl group of solute oligomer and hydrophilicity based on the high-order structure of oligomeric PAs, corporately contribute to the separation, but the hydrogen bonding effect is predominant in our HILIC separation mode.  相似文献   

15.
A mathematical method for the calculation of the dead time (tm) in HPLC was evaluated using a computer simulation approach, in which artificial perturbations were introduced to Simulated homolog retention times. The calculation was based on a modified and extended Grobler and Bálisz (GB) method. Investigated wav how the precision of the calculated tM is affected by: statistical fluctuations in retention times and which, and how many homolog retention times are used. Based on these simulations a two-step procedure for the tM calculation is proposed: In the first step the linearity of log tR, n vs carbon number n is checked using as many homolog retention times as possible. The slope value bo of the first linear regression in the GB method is used for the selection of homolog retention times in the final tM calculation. In the second step the optimal selection of homologs is made and the final tM calculation is carried out. Guidelines for homolog selection are given.  相似文献   

16.
17.
Short‐chain carboxylic acids are relevant in pharmaceutical, food quality control, and biomedical analysis. In this study, 11 acids commonly found in drugs and in food products were selected. Wine was chosen as matrix for testing the method. The test compounds were used for comparing the selectivity of four 150 × 2.1 mm zwitterionic hydrophilic interaction LC (HILIC) columns (ZIC‐HILIC 5 μm, 200 Å, and 3.5 μm, 100 Å, ZIC‐pHILIC 5 μm, ZIC‐cHILIC 3 μm, 100 Å) while varying the conditions to optimize for low UV wavelength detection and achieve high sensitivity. Retention using potassium phosphate and ammonium carbonate as mobile‐phase components at pH 6.0, 7.5, and 8.5–8.9 was studied considering recent hypotheses on HILIC mechanism‐related with the Hofmeister series effect and ion hydration. An isocratic method with UV detection at 200 nm and mobile phase consisting of 75% acetonitrile and 10 mM potassium phosphate at pH 6.0 applied to a ZIC‐cHILIC column was found provisionally optimal and partially validated for the 11 analytes. Satisfactory results (R2 from 0.9940 to >0.9999), and recoveries from 93–106% for all analytes evidenced the method as suitable for wine analysis. To the best of our knowledge, no previous study has reported on the direct ZIC‐HILIC separation and UV detection of the acids considered here in wine.  相似文献   

18.
Short chain aliphatic acids, including volatile fatty acids (VFAs), di-/tricar☐ylic acids, hydroxy- and keto-acids were analyzed in landfill leachates and related water samples by two independently operated ion-exclusion chromatographic systems, differing mainly in the retention characteristics of the separation columns (Merck Polyspher OA-HY, Dionex HPICE AS6), and in the detection mode (UV absorbance at 210 nm, conductivity). The amino acid content of the samples was determined by ion chromatography. Because methods for amino acids analysis are widely standardized, the main efforts were undertaken to optimize the determination of car☐ylic acids. The VFAs (7 compounds) contributed between 33% and 89% to the sample's dissolved organic carbon (DOC) content. The DOC proportions of the multifunctional acids (9 compounds) ranged from 1.1–49%. Between 0.9% and 13% of the DOC content was apportioned to amino acids. Main components were alanine, valine and leucine. The analytical efficiencies of the ion-exclusion chromatography systems were compared and the specific application properties are discussed.  相似文献   

19.
The retention factor (k) and retention index (I) of homologous series compounds such as alkylbenzenes (BZ), alkylaryl ketones, alkylbenzoates, and alkylparabens in microemulsion electrokinetic chromatography (MEEKC) with suppressed electroosmosis were investigated in a wide range of SDS concentrations ([SDS]), temperatures, and concentrations of organic cosolvents (phi). Using BZ as standards, the retention indices of other homologous series compounds were determined and they were found to be independent of [SDS] and temperature, while are dependent on the types and concentrations of organic cosolvents. The retention factor linearly increases with increasing [SDS], while linearly decreases with increasing temperature. The value of log k linearly decreases with increasing phi for methanol, ethanol, or ACN, while decreases by a second-degree polynomial with increasing phi for 2-propanol. Excellent agreement was found between the observed and predicted values of log k of analytes in MEEKC at given [SDS] and phi, where the predicted values were obtained from modified equations of the linear relationship of log k as functions of [SDS], the number of carbons, and phi. Therefore, both k and I can be used for peak identification of homologous series compounds.  相似文献   

20.
S. J. Hawkes 《Chromatographia》1989,28(5-6):237-240
Summary The free energy of partition of a methylene group is constant within a homologous series down to C5 and nearly constant to C3, contrary to the finding of Golovnya and Grigoryeva [5]. Retention indices are linear with carbon number: values may be extrapolated from higher carbon numbers to C5 within experimental uncertainty, to C4 with error no greater than 5 units and to C3 with error no greater than 10 units. Error in extrapolating the logarithm of the adjusted retention time, log tR, to C5 is thus negligible, to C4 has possible error up to 5b/100 and to C3 up to 10b/100, whereb is the slope of the plot of log tR against carbon number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号