首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An experimental setup that coupled IR multiple‐photon dissociation (IRMPD) and laser‐induced fluorescence (LIF) techniques was implemented to study the kinetics of the recombination reaction of dichlorocarbene radicals, CCl2, in an Ar bath. The CCl2 radicals were generated by IRMPD of CDCl3. The time dependence of the CCl2 radicals’ concentration in the presence of Ar was determined by LIF. The experimental conditions achieved allowed us to associate the decrease in the concentration of radicals to the self‐recombination reaction to form C2Cl4. The rate constant for this reaction was determined in both the falloff and the high‐pressure regimes at room temperature. The values obtained were k0 = (2.23 ± 0.89) × 10?29 cm6 molecules?2 s?1 and k = (6.73 ± 0.23) × 10?13 cm3 molecules?1 s?1, respectively.  相似文献   

2.
The ultraviolet absorption spectrum of CF3CFClO2 and the kinetics of the self reactions of CF3CFCl and CF3CFClO2 radicals and the reactions of CF3CFClO2 with NO and NO2 have been studied in the gas phase at 295 K by pulse radiolysis/transient UV absorption spectroscopy. The UV absorption cross section of CF3CFCl radicals was measured to be (1.78 ± 0.22) × 10?18 cm2 molecule?1 at 220 nm. The UV spectrum of CF3CFClO2 radicals was quantified from 220 nm to 290 nm. The absorption cross section at 250 nm was determined to be (1.67 ± 0.21) × 10?18 cm2 molecule?1. The rate constants for the self reactions of CF3CFCl and CF3CFClO2 radicals were (2.6 ± 0.4) × 10?12 cm3 molecule?1 s?1 and (2.6 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. The reactivity of CF3CFClO2 radicals towards NO and NO2 was determined to (1.5 ± 0.6) × 10?11 cm3 molecule?1 s?1 and (5.9 ± 0.5) × 10?12 cm3 molecule?1 s?1, respectively. Finally, the rate constant for the reaction of F atoms with CF3CFClH was determined to (8 ± 2) × 10?13 cm3 molecule?1 s?1. Results are discussed in the context of the atmospheric chemistry of HCFC-124, CF3CFClH. © 1994 John Wiley & Sons, Inc.  相似文献   

3.
The reaction mechanisms for oxidation of CH3CCl2 and CCl3CH2 radicals, formed in the atmospheric degradation of CH3CCl3 have been elucidated. The primary oxidation products from these radicals are CH3CClO and CCl3CHO, respectively. Absolute rate constants for the reaction of hydroxyl radicals with CH3CCl3 have been measured in 1 atm of Argon at 359, 376, and 402 K using pulse radiolysis combined with UV kinetic spectroscopy giving ??(OH + CH3CCl3) = (5.4 ± 3) 10?12 exp(?3570 ± 890/RT) cm3 molecule?1 s?1. A value of this rate constant of 1.3 × 10?14 cm3 molecule?1 s?1 at 298 K was calculated using this Arrhenius expression. A relative rate technique was utilized to provide rate data for the OH + CH3 CCl3 reaction as well as the reaction of OH with the primary oxidation products. Values of the relative rate constants at 298 K are: ??(OH + CH3CCl3) = (1.09 ± 0.35) × 10?14, ??(OH + CH3CClO) = (0.91 ± 0.32) × 10?14, ??(OH + CCl3CHO) = (178 ± 31) × 10?14, ??(OH + CCl2O) < 0.1 × 10?14; all in units of cm3 molecule?1 s?1. The effect of chlorine substitution on the reactivity of organic compounds towards OH radicals is discussed.  相似文献   

4.
The rate constants k1 for the reaction of CF3CF2CF2CF2CF2CHF2 with OH radicals were determined by using both absolute and relative rate methods. The absolute rate constants were measured at 250–430 K using the flash photolysis–laser‐induced fluorescence (FP‐LIF) technique and the laser photolysis–laser‐induced fluorescence (LP‐LIF) technique to monitor the OH radical concentration. The relative rate constants were measured at 253–328 K in an 11.5‐dm3 reaction chamber with either CHF2Cl or CH2FCF3 as a reference compound. OH radicals were produced by UV photolysis of an O3–H2O–He mixture at an initial pressure of 200 Torr. Ozone was continuously introduced into the reaction chamber during the UV irradiation. The k1 (298 K) values determined by the absolute method were (1.69 ± 0.07) × 10?15 cm3 molecule?1 s?1 (FP‐LIF method) and (1.72 ± 0.07) × 10?15 cm3 molecule?1 s?1 (LP‐LIF method), whereas the K1 (298 K) values determined by the relative method were (1.87 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CHF2Cl reference) and (2.12 ± 0.11) × 10?15 cm3 molecule?1 s?1 (CH2FCF3 reference). These data are in agreement with each other within the estimated experimental uncertainties. The Arrhenius rate constant determined from the kinetic data was K1 = (4.71 ± 0.94) × 10?13 exp[?(1630 ± 80)/T] cm3 molecule?1 s?1. Using kinetic data for the reaction of tropospheric CH3CCl3 with OH radicals [k1 (272 K) = 6.0 × 10?15 cm3 molecule?1 s?1, tropospheric lifetime of CH3CCl3 = 6.0 years], we estimated the tropospheric lifetime of CF3CF2CF2CF2CF2CHF2 through reaction with OH radicals to be 31 years. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 36: 26–33, 2004  相似文献   

5.
The UV absorption spectrum and kinetics of CH2I and CH2IO2 radicals have been studied in the gasphase at 295 K using a pulse radiolysis UV absorption spectroscopic technique. UV absorption spectra of CH2I and CH2IO2 radicals were quantified in the range 220–400 nm. The spectrum of CH2I has absorption maxima at 280 nm and 337.5 nm. The absorption cross-section for the CH2I radicals at 337.5 nm was (4.1 ± 0.9) × 10?18 cm2 molecule?1. The UV spectrum of CH2IO2 radicals is broad. The absorption cross-section at 370 nm was (2.1 ± 0.5) × 10?18 cm2 molecule?1. The rate constant for the self reaction of CH2I radicals, k = 4 × 10?11 cm3 molecule?1 s?1 at 1000 mbar total pressure of SF6, was derived by kinetic modelling of experimental absorbance transients. The observed self-reaction rate constant for CH2IO2 radicals was estimated also by modelling to k = 9 × 10?11 cm3 molecule?1 s?1. As part of this work a rate constant of (2.0 ± 0.3) × 10?10 cm3 molecule?1 s?1 was measured for the reaction of F atoms with CH3I. The branching ratios of this reaction for abstraction of an I atom and a H atom were determined to (64 ± 6)% and (36 ± 6)%, respectively. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
The rate constant for the reaction of the hydroxyl radical with 1,2,2-trifuoroethane has been determined over the temperature range 278–323 K using a relative rate technique. The results provide a value of k(OH + CH2FCHF2) = 2.65 × 10?12 exp(?1542 ± 500/T) cm3 molecule?1 s?1 based on k(OH + CH3CCl3) = 1.2 × 10?12 exp(?1400 ± 200/T) cm3 molecule?1 s?1 for the rate constant of the reference reaction. The chlorine atom initiated photooxidation of CH2CHF2 was investigated from 255 to 330 K and as a function of O2 pressure at 1 atmosphere total pressure using Fourier transform infrared spectroscopy. The major carbon-containing products were CHFO and CF2O suggesting that the alkoxy radicals CH2FCF2O and CHF2CHFO, formed in the reaction, react predominantly by carbon-carbon bond cleavage. The results indicate that formation of CHF2CFO from the reaction of CHF2CHFO radicals with O2 will be unimportant under all atmospheric conditions. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
The kinetics and mechanism of the following reactions have been studied in the temperature range 230–360 K and at total pressure of 1 Torr of helium, using the discharge‐flow mass spectrometric method: 1a : (1a) 1b : (1b) The following Arrhenius expression for the total rate constant was obtained from the kinetics of OH consumption in excess of ClO radical, produced in the Cl + O3 reaction either in excess of Cl atoms or ozone: k1 = (6.7 ± 1.8) × 10?12 exp {(360 ± 90)/T} cm3 molecule?1 s?1 (with k1 = (2.2 ± 0.4) × 10?11 cm3 molecule?1 s?1 at T = 298 K), where uncertainties represent 95% confidence limits and include estimated systematic errors. The value of k1 is compared with those from previous studies and current recommendations. HCl was detected as a minor product of reaction (1) and the rate constant for the channel forming HCl (reaction (1b)) has been determined from the kinetics of HCl formation at T = 230–320 K: k1b = (9.7 ± 4.1) × 10?14 exp{(600 ± 120)/T} cm3 molecule?1 s?1 (with k1b = (7.3 ± 2.2) × 10?13 cm3 molecule?1 s?1 and k1b/k1 = 0.035 ± 0.010 at T = 298 K), where uncertainties represent 95% confidence limits. In addition, the measured kinetic data were used to derive the enthalpy of formation of HO2 radicals: Δ Hf,298(HO2) = 3.0 ± 0.4 kcal mol?1. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 587–599, 2001  相似文献   

8.
The UV absorption spectrum and the kinetics of the self combination reaction of the CCl3 radical were studied by flash photolysis in the temperature range 253–623 K. Experiments were performed at the atmospheric pressure, except for a few runs at the highest temperatures, which were performed between 30 and 760 torr. CCl3 radicals were generated by flash photolysis of molecular chlorine in the presence of chloroform. The UV spectrum exhibits a strong unstructured band between 195 and 260 nm with a maximum at 211 ± 2 nm. The absorption cross section, measured relative to σ(HO2), is σ(CCl3) = (1.45 ± 0.35) × 10?17 cm2 molecule?1 at the maximum. This value takes into account the uncertainty in σ(HO2) which was taken equal to (4.9 ± 0.7) × 10?18 cm2 molecule?1. The absolute rate constant for the CCl3 mutual combination was determined by computer simulation of the transient decays. The rate constant, which exhibits a slight negative temperature coefficient, can be expressed as: The study of the pressure dependence showed that only a slight fall-off behavior could be observed at the highest temperature (623 K). This result was corroborated by RRKM calculations which showed that the rate constant is at the high pressure limit under most experimental conditions below 600 K.  相似文献   

9.
Rate constants for the reactions of 2‐methoxy‐6‐(trifluoromethyl)pyridine, diethylamine, and 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol with OH radicals have been measured at 298 ± 2 K using a relative rate method. The measured rate constants (cm3 molecule?1 s?1) are (1.54 ± 0.21) × 10?12 for 2‐methoxy‐6‐(trifluoromethyl)pyridine, (1.19 ± 0.25) × 10?10 for diethylamine, and (1.76 ± 0.38) × 10?12 for 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol, where the indicated errors are the estimated overall uncertainties including those in the rate constants for the reference compounds. No reaction of 2‐methoxy‐6‐(trifluoromethyl)pyridine with gaseous nitric acid was observed, and an upper limit to the rate constant for the reaction of 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol with O3 of <7 × 10? 20 cm3 molecule?1 s?1 was determined. Using a 12‐h average daytime OH radical concentration of 2 × 106 molecule cm?3, the lifetimes of the volatile organic compounds studied here with respect to reaction with OH radicals are 7.5 days for 2‐methoxy‐6‐(trifluoromethyl)pyridine, 1.2 h for diethylamine, and 6.6 days for 1,1,3,3,3‐pentamethyldisiloxan‐1‐ol. Likely reaction mechanisms are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 631–638, 2011  相似文献   

10.
The overall rate coefficient k of the self recombination of BrO radicals has been measured at 298 K with use of the discharge flow/mass spectrometry technique. The rate coefficient k2 for the reaction channel forming Br2 has been also determined. The results are: k = (3.2 ± 0.5) × 10?12 and k2 = (4.7 ± 1.5) × 10?13 (in cm3 molecule?1 s?1). These results are discussed with respect to previous literature data.  相似文献   

11.
Reactions of HCCCO and NCCO radicals with O2 have been studied by a combination of pulsed laser photolysis and photoionization mass spectrometry. HCCCO was produced by 193‐nm photolysis of methylpropiolate or 3‐butyn‐2‐one, and NCCO was formed by 193‐nm photolysis of acetylcyanide. The rate constants obtained at 298 ± 3 K were (6.5 ± 0.7) × 10?12 cm3 molecule?1 s?1 for the HCCCO + O2 reaction, and no pressure dependence was observed between 1.5 and 16 Torr of N2 as a bath gas. Because HCO and HCCO radicals were observed as reaction products, it was confirmed that the reaction proceeds by a two‐body reaction. On the other hand, the rate constants of NCCO with O2 depended on the total pressure and were (5.4–8.8) × 10?13 cm3 molecule?1 s?1 for total pressures 2.0–15.5 Torr of N2, confirming that the reaction proceeds by a three‐body process. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 440–448, 2001  相似文献   

12.
The kinetics and mechanism of gas‐phase propylene oxide (PPO) reactions were studied in a 142‐L reaction chamber by long‐path Fourier transform infrared spectroscopy at atmospheric pressure and 298 K. Rate coefficients for the reaction of PPO with ozone (O3), chlorine atoms (Cl), and hydroxyl radicals (OH) were measured using the relative rate technique. Product yields of acetic acid, acetic formic anhydride, formic acid, and carbon monoxide were determined for the following reactions: PPO with Cl both in the presence and absence of NO, PPO with OH and NO, methyl acetate with Cl both in the presence and absence of NO, and ethyl formate with Cl both in the presence and absence of NO. The measured rate coefficients for PPO with O3, Cl, and OH are <3.5 × 10?21 cm3 molecule?1 s?1, (3.0 ± 0.7) × 10?11 cm3 molecule?1 s?1, and (3.0 ± 1.0) × 10?13 cm3 molecule?1 s?1, respectively. The carbon balance for the products measured ranged from 10% (for OH + PPO) to 100% (for Cl + methyl acetate in the absence of NO). The mechanistic and atmospheric implications of these measurements are discussed. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 507–521, 2011  相似文献   

13.
Rate constants for several intermediate steps in the OH‐initiated oxidation of isoprene were determined using laser‐photolysis/laser‐induced fluorescence of OH radicals at total pressures between 3 and 4 Torr at 295 K. The rate constant for decomposition of the hydroxyalkoxy radical was determined to be (3.0 ± 0.5) × 104 s?1 in this pressure range, which is in fair agreement with previous work. The presence of a prompt alkoxy decomposition pathway was also investigated and found to contribute less than 10% to the total hydroxyalkoxy radical decomposition. The rate constant for the reaction of the hydroxyperoxy radical with NO was determined to be (2.5 ± 0.5) × 10?11 cm3 molecule?1 s?1, which is moderately higher than previously reported. © 2002 Wiley Periodicals, Inc. Int J Chem Kinet 34: 255–261, 2002  相似文献   

14.
A high‐resolution IR diode laser in conjunction with a Herriot multiple reflection flow‐cell has been used to directly determine the rate coefficients for simple alkanes with Cl atoms at room temperature (298 K). The following results were obtained: k(Cl + n‐butane) = (1.91 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐pentane) = (2.46 ± 0.12) × 10?10 cm3 molecule?1 s?1, k(Cl + iso‐pentane) = (1.94 ± 0.10) × 10?10 cm3 molecule?1 s?1, k(Cl + neopentane) = (1.01 ± 0.05) × 10?10 cm3 molecule?1 s?1, k(Cl + n‐hexane) = (3.44 ± 0.17) × 10?10 cm3 molecule?1 s?1 where the error limits are ±1σ. These values have been used in conjunction with our own previous measurements on Cl + ethane and literature values on Cl + propane and Cl + iso‐butane to generate a structure activity relationship (SAR) for Cl atom abstraction reactions based on direct measurements. The resulting best fit parameters are kp = (2.61 ± 0.12) × 10?11 cm3 molecule?1 s?1, ks = (8.40 ± 0.60) × 10?11 cm3 molecule?1 s?1, kt = (5.90 ± 0.30) × 10?11 cm3 molecule?1 s?1, with f( ? CH2? ) = f (? CH2? ) = f (?C?) = f = 0.85 ± 0.06. Tests were carried out to investigate the potential interference from production of excited state HCl(v = 1) in the Cl + alkane reactions. There is some evidence for HCl(v = 1) production in the reaction of Cl with shape n‐hexane. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 34: 86–94, 2002  相似文献   

15.
Rate constants for the reaction of OH radicals with OCS and CS2 have been determined at 296 K using the flash photolysis resonance fluorescence technique. The values derived from this study are kOH + OCS = (5.66 ± 1.21) × 10?14 cm3 molecule?1 s?1 and kOH + CS2 = (1.85 ± 0.34) × 10?13 cm3 molecule?1 s?1, where the uncertainties are 95% confidence limits making allowance for possible systematic errors.  相似文献   

16.
The rate coefficient for the reaction of CCl3 radicals with ozone has been measured at 303 ± 2 K. The CCl3 radicals were generated by the pulsed laser photolysis of carbon tetrachloride at 193 nm. The time profile of CCl3 concentration was monitored with a photoionization mass spectrometer. Addition of the O3–O2 mixture to this system caused a decay of the CCl3 concentration because of the reactions of CCl3 + O3 → products (5) and CCl3 + O2 → products (4). The decay of signals from the CCl3 radical was measured in the presence and absence of ozone. In the absence of ozone, the O3–O2 mixture was passed through a heated quartz tube to convert the ozone to molecular oxygen. Since the rate coefficient for the reaction of CCl3 + O2 could be determined separately, the absolute rate coefficient for reaction ( 5 ) was obtained from the competition among these reactions. The rate coefficient determined for reaction ( 5 ) was (8.6 ± 0.5) × 10?13 cm3 molecule?1 s?1 and was also found to be independent of the total pressure (253–880 Pa of N2). This result shows that the reaction of CCl3 with O3 cannot compete with its reaction with O2 in the ozone layer. © 2003 Wiley Periodicals, Inc. Int J Chem Kinet 35: 310–316, 2003  相似文献   

17.
The rate constant for the reactions of atomic chlorine with 1,4‐dioxane (k1), cyclohexane (k2), cyclohexane‐d12(k3), and n‐octane (k4) has been determined at 240–340 K using the relative rate/discharge fast flow/mass spectrometer (RR/DF/MS) technique developed in our laboratory. Essentially, no temperature dependence for these reactions was observed over this temperature range, with an average of k1 = (1.91 ± 0.20) × 10?10 cm3 molecule?1 s?1, k2 = (2.91 ± 0.31) × 10?10 cm3 molecule?1 s?1, k3 = (2.73 ± 0.30) × 10?10 cm3 molecule?1 s?1, and k4 = (3.22 ± 0.36) × 10?10 cm3 molecule?1 s?1, respectively. The kinetic isotope effect of the reaction of cyclohexane with atomic chlorine has also been determined to be 1.14 by directly monitoring the decay of both cyclohexane and cyclohexane‐d12 in the presence of chlorine atoms, which is consistent with the literature value of 1.20. © 2006 Wiley Periodicals, Inc. Int J Chem Kinet 38: 386–398, 2006  相似文献   

18.
Relative rate constants for the reaction of OH radicals with a series of ketones have been determined at 299 ± 2 K, using methyl nitrite photolysis in air as a source of hydroxyl radicals. Using a rate constant for the reaction of OH radicals with cyclohexane of 7.57 × 10?12 cm3 molecule?1 s?1, the rate constants obtained are (× 1012 cm3 molecule?1 s?1): 2-pentanone, 4.74 ± 0.14; 3-pentanone, 1.85 ± 0.34; 2-hexanone, 9.16 ± 0.61; 3-hexanone, 6.96 ± 0.29; 2,4-dimethyl-3-pentanone, 5.43 ± 0.41; 4-methyl-2-pentanone, 14.5 ± 0.7; and 2,6-dimethyl-4-heptanone, 27.7 ± 1.5. These rate constants indicate that while the carbonyl group decreases the reactivity of C? H bonds in the α position toward reaction with the OH radical, it enhances the reactivity in the β position.  相似文献   

19.
The rate constant of the reaction of NO3 radical with CF3I was determined by a relative rate method using a Fourier transform infrared (FTIR) spectrometer smog chamber with a long path length gas cell. As a result, the upper limit of the rate constant was determined to be <2.2 × 10?18 cm3 molecule?1 s?1 in 100 Torr of total pressure at 298 K, which suggests that CF3I emitted into the atmosphere accumulates during night. The rate constant of the reaction of NO3 with I(2P3/2) was also measured using time‐resolved cavity ring‐down spectroscopy. The rate constant showed no pressure dependence in the range of 100–500 Torr of total pressure at 298 K and was determined to be (3.9 ± 1.0) × 10?11 cm3 molecule?1 s?1. The present result is different from the previous ones and is about half of that reported most recently. From this rate constant, it is likely that the reaction of NO3 radical with I(2P3/2) does not have a much influence on the loss of I(2P3/2) and the formation cycle of IO radical in the atmosphere. © 2012 Wiley Periodicals, Inc. Int J Chem Kinet 44: 649–660, 2012  相似文献   

20.
The production and reactions of vinyl radicals and hydrogen atoms from the photolysis of vinyl iodide (C2H3I) at 193 nm have been examined employing laser photolysis coupled to kinetic-absorption spectroscopic and gas chromatographic product analysis techniques. The time history of vinyl radicals in the presence of hydrogen atoms was monitored using the 1,3-butadiene (the vinyl radical combination product) absorption at 210 nm. By employing kinetic modeling procedures a rate constant of 1.8 × 10?10 cm2 molecule?1 s?1 for the reaction C2H3 + H has been determined at 298 K and 27 KPa (200 torr) pressure. A detailed error analysis for determination of the C2H3 + H reaction rate constant, the initial C2H3 and H concentrations are performed. A combined uncertainty of ±0.43 × 10?10 cm2 molecule?1 s?1 for the above measured rate constant has been evaluated by combining the contribution of the random errors and the systematic errors (biases) due to uncertainties of each known parameter used in the modeling. © 1995 John Wiley & Sons, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号