首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive and reliable ultra‐high‐performance liquid chromatography with tandem mass spectrometry (UHPLC–MS/MS) method was developed and validated for simultaneous determination of l ‐tetrahydropalmatine (l ‐THP) and its active metabolites l ‐isocorypalmine (l ‐ICP) and L ‐corydalmine (l ‐CD) in rat plasma. The analytes were extracted by liquid–liquid extraction and separated on a Bonshell ASB C18 column (2.1 × 100 mm; 2.7 μm; Agela) using acetonitrile–formic acid aqueous as mobile phase at a flow rate of 0.2 mL/min in gradient mode. The method was validated over the concentration range of 4.00–2500 ng/mL for l ‐THP, 0.400–250 ng/mL for l ‐ICP and 1.00–625 ng/mL for l ‐CD. Intra‐ and inter‐day accuracy and precision were within the acceptable limits of <15% at all concentrations. Correlation coefficients (r ) for the calibration curves were >0.99 for all analytes. The quantitative method was successfully applied for simultaneous determination of l ‐THP and its active metabolites in a pharmacokinetic study after oral administration with l ‐THP at a dose of 15 mg/kg to rats.  相似文献   

2.
dl ‐Praeruptorin A is a novel drug with valuable apoptosis and inflammation inhibitory effects in cardiac muscle. Previous pharmacokinetic studies of dl ‐praeruptorin A have had limited success due to its very low plasma concentrations. In this study, we developed and validated a new rapid, sensitive and specific high‐performance liquid chromatography electrospray ionization tandem mass spectrometry (HPLC/ESI–MS/MS) method for quantitative analysis of dl ‐praeruptorin A in rat plasma. dl ‐Praeruptorin A and diazepam (internal standard) extracted from rat plasma samples with chloroform and analyzed on an XTerra? RP18 column (150 mm × 4.6 mm i.d., 5 µm) were chromatographically separated within 5.5 min using methanol–water (75:25, v/v; flow rate 1 mL/min) as the mobile phase. dl ‐Praeruptorin A was detected in positive ion mode using multiple reaction monitoring. The method was validated and the specificity, linearity, lower limit of quantitation (LLOQ, 2.5 ng/mL), precision (intra‐ and inter‐day <11.0%), accuracy (90.2–96.3%), recovery (>79.2%) and stability were determined. The correlation coefficient (r2) for the linear range of 2.5–2500.0 ng/mL was >0.999. No matrix effects were observed. The validated method was successfully applied to pharmacokinetic studies of dl ‐praeruptorin A after intravenous administration to rats. The LLOQ obtained with this method was lower than in previous studies and could be valuable for determination of dl ‐praeruptorin A in therapeutic drug monitoring and preclinical studies to establish appropriate dose and frequency. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

3.
A fast, sensitive, and high‐throughput ultra‐HPLC–MS/MS method has been developed and validated for the simultaneous determination of three main active constituents of Euphorbiae pekinensis Radix in rat plasma. After addition of the internal standard, plasma samples were extracted by liquid–liquid extraction with ethyl acetate/isopropanol (1:1, v/v) and separated on a CAPCELL PAK C18 column (100 × 2.0 mm, 2 μm, Shiseido, Japan), using a gradient mobile phase system of methanol/water. The detection of the analytes was performed on a 4000Q UHPLC–MS/MS system with turbo ion spray source in the negative ion and multiple reaction‐monitoring mode. The linear range was 1.0–1000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐glucopyranoside (i), 1.5–1500 ng/mL for 3,3′‐di‐O‐methyl ellagic acid‐4′‐Oβ‐d ‐xylopyranoside (ii), and 5.0–5000 ng/mL for 3,3′‐di‐O‐methyl ellagic acid (iii). The intra‐ and interday precision and accuracy of all the analytes were within 15%. The extraction recoveries of the three analytes and internal standard from plasma were all more than 80%. The validated method was first successfully applied to the evaluation of pharmacokinetic parameters of compounds 1 , 2 , and 3 in rat plasma after intragastric administration of the Euphorbiae pekinensis Radix extract.  相似文献   

4.
In this work, a [Cu(mal)(bpy)]?H2O (mal, l ‐(?)‐malic acid; bpy, 4,4′‐bipyridyl) homochiral metal‐organic frameworks (MOFs) was synthesized and used for modifying the inner walls of capillary columns by utilizing amido bonds to form covalent links between the MOFs particles and capillary inner wall. The synthesized [Cu(mal)(bpy)]?H2O and MOFs‐modified capillary column were characterized by X‐ray diffraction, thermogravimetric analysis, particle size distribution analysis, nitrogen absorption characterization, FTIR spectroscopy, SEM, and energy‐dispersive X‐ray spectroscopy (EDX). The MOFs‐modified capillary column was used for the stereoisomer separation of some drugs. The LODs and LOQs of six analytes were 0.1 and 0.25 μg/mL, respectively. The linear range was 0.25–250 μg/mL for ephedrine, 0.25–250 μg/mL for pseudoephedrine, 0.25–180 μg/mL for d ‐penicillamine, 0.25–120 μg/mL for l ‐penicillamine, 0.25–180 μg/mL for d ‐phenylalanine, and 0.25–160 μg/mL for l ‐phenylalanine, all with R2 > 0.999. Finally, the MOFs‐modified capillary column was applied for the analysis of active ingredients in a real sample of the traditional Chinese medicine ephedra.  相似文献   

5.
A direct injection liquid chromatography–electrospray ionization–tandem mass spectrometric method (LC‐ESI‐MS/MS) was developed and validated for the rapid and simple determination of 13 phenylalkylamine derivatives. Eight deuterium‐labeled compounds were prepared for use as internal standards (ISs) to quantify the analytes. Urine samples mixed with ISs were centrifuged, filtered through 0.22 µm filters and then injected directly into the LC‐ESI‐MS/MS system. The mobile phase was composed of 0.2% formic acid and 2 mM ammonium formate in distilled water and 0.2% formic acid and 2 mM ammonium formate in acetonitrile. The analytical column was a Capcell Pak MG‐II C18 (150 × 2.0 mm i.d., 5 µm, Shiseido). Separation and detection of the analytes were accomplished within 10 min. The linear ranges were 5–750 ng/mL (ephedrine and fenfluramine), 10–750 ng/mL (3,4‐methylenedioxyamphetamine, phendimetrazine, methamphetamine, 3,4‐methylenedioxyethylamphetamine and benzphetamine), 20–750 ng/mL (norephedrine, amphetamine, phentermine and ketamine) and 30–1000 ng/mL (3,4‐methylenedioxymethamphetamine and norketamine), with determination coefficients, R2, ≥ 0.9967. The intra‐day and inter‐day precisions were within 19.1%. The intra‐day and inter‐day accuracies ranged from ?16.0 to 18.7%. The lower limits of quantification for all the analytes were lower than 26.5 ng/mL. The applicability of the method was examined by analyzing urine samples from drug abusers (n = 30). Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
We have developed a method using on-line solid-phase extraction–high-performance liquid chromatography–tandem mass spectrometry (SPE-HPLC-MS/MS) and isotope dilution quantification to measure atrazine and seven atrazine metabolites in urine. The metabolites measured were hydroxyatrazine, diaminochloroatrazine, desisopropylatrazine, desethylatrazine, desethylatrazine mercapturate, atrazine mercaturate and atrazine itself. Our method has good precision (relative standard deviations ranging from 4 to 20% at 5, 10 and 50 ng/mL), extraction efficiencies of 67 to 102% at 5 and 25 ng/mL, relative recoveries of 87 to 112% at 5, 25, 50 and 100 ng/mL limits of detection (LOD) ranging from 0.03 to 2.80 ng/mL. The linear range of our method spans from the analyte LOD to 100 ng/mL (40 ng/mL for atrazine and atrazine mercapturate) with R 2 values of greater than 0.999 and errors about the slope of less than 3%. Our method is rapid, cost-effective and suitable for large-scale sample analyses and is easily adaptable to other biological matrices. More importantly, this method will allow us to better assess human exposure to atrazine-related chemicals. Figure A schematic representation showing the elution of the analytes from the solid-phase extraction cartridge onto the analytical column for chromatographic separation prior to MS/MS analysis  相似文献   

7.
A simple and rapid GC‐MS method has been developed for the screening and quantification of many illicit drugs and their metabolites in human urine by using automatic SPE and trimethylsilylation. Sixty illicit drugs, including parent drugs and their metabolites that are possibly abused in Korea, can be monitored by this method. Among them, 24 popularly abused illicit drugs were selected for quantification. Very delicate optimizations were carried out in SPE, trimethylsilylation derivatization, and GC/MS to enable such remarkable achievements. Trimethylsilylated analytes were well separated within 21 min by GC‐MS. In the validation results, the LOD of all the analytes were in the range of 2–75 ng/mL. The LOQ of the quantified analytes were in the range of 5–98 ng/mL. The linearity (r2) of the quantified analytes ranged 0.990–1.000 in each concentration range between 10 and 1000 ng/mL. The mean recoveries ranged from 62 to 126% at three different concentrations of each analyte. The inter‐day and inter‐person accuracies were within ?13.3~14.9%, and ?10.1~13.0%, respectively, and the inter‐day and inter‐person precisions were less than 12.9%. The method was reliable and efficient for the screening and quantification of abused illicit drugs in routine urine analysis.  相似文献   

8.
A sensitive and reliable high‐performance liquid chromatography–mass spectrometry (LC–MS/MS) was developed and validated for simultaneous quantification IC87114, roflumilast (RFM), and its active metabolite roflumilast N‐oxide (RFN) using tolbutamide as an internal standard. The analytes were extracted by using liquid–liquid extraction and separated on a reverse phase C18 column (50 mm × 3 mm i.d., 4.6 µ) using methanol: 2 mM ammonium acetate buffer, pH 4.0 as mobile phase at a flow rate 1 mL/min in gradient mode. Selective reaction monitoring was performed using the transitions m/z 398.3 > 145.9, 403.1 >186.9, 419.1 > 187.0 and 271.1 > 155.0 to quantify quantification IC87114, RFM, RFN and tolbutamide, respectively. The method was validated over the concentration range of 0.1–60 ng.mL?1 for RFM and RFN and 6 to 2980 ng.mL?1 for IC87114. Intra‐ and inter‐day accuracy and precision of validated method were within the acceptable limits of <15% at all concentrations. Coefficients of correlation (r2) for the calibration curves were >0.99 for all analytes. The quantitation method was successfully applied for simultaneous estimation of IC87114, RFM and RFN in a pharmacokinetic drug–drug interaction study in Wistar rats. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
The concentrations of l ‐tryptophan (Trp) and the metabolite l ‐kynurenine (KYN) can be used to evaluate the in‐vivo activity of indoleamine 2,3‐dioxygenase (IDO) and tryptophan 2,3‐dioxygenase (TDO). As such, a novel method involving derivatization of l ‐Trp and l ‐KYN with (R)‐4‐(3‐isothiocyanatopyrrolidin‐1‐yl)‐7‐(N,N‐dimethylaminosulfonyl)‐2,1,3‐benzoxadiazole (DBD‐PyNCS) and separation by high‐performance liquid chromatography (HPLC) with tandem mass spectrometric (MS/MS) detection on a triazole‐bonded column (Cosmosil HILIC®) was developed to determine their concentrations. The optimized mobile phase, CH3CN/10 mm ammonium formate in H2O (pH 5.0) (90:10, v/v) eluted isocratically, resulted in satisfactory separation and MS/MS detection of the analytes. The detection limits of l ‐Trp and l ‐KYN were approximately 50 and 4.0 pm , respectively. The column temperature affected the retention behaviour of the Trp and KYN derivatives, with increased column temperatures leading to increased capacity factors; positive enthalpy changes were revealed by van't Hoff plot analyses. Using the proposed LC‐MS/MS method, l ‐Trp and l ‐KYN were successfully determined in 10 μL human serum using 1‐methyl‐l ‐Trp as an internal standard. The precision and recovery of l ‐Trp were in the ranges 2.85–9.29 and 95.8–113%, respectively, while those of l ‐KYN were 2.51–16.0 and 80.8–98.2%, respectively. The proposed LC‐MS/MS method will be useful for evaluating the in vivo activity of IDO or TDO. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

10.
We developed an isotopic dilution high-performance liquid chromatography (HPLC)/tandem mass spectrometer (MS/MS) method to rapidly and accurately quantify nine metabolites of several classes of pesticide in 1 mL human urine specimens. The analytes covered in the method are two organophosphate (OP) pesticide metabolites: 3,5,6-trichloro-2-pyridinol (TCPy), 2-isopropyl-6-methyl-4-pyrimidinol (IMPY); three synthetic pyrethroid metabolites: 3-phenoxy benzoic acid (3-PBA), 4-fluoro-3-phenoxybenzoic acid (4-F-3-PBA) and trans-3-(2,2-dichlorovinyl)-2,2-dimethyl-1(1-cyclopropane) carboxylic acid (t-DCCA); three herbicide metabolites: 2,4-dichlorophenoxyacetic acid (DCPAA), 2,4,5-trichlorophenoxyacetic acid (TCPAA) and atrazine mercapturate; and one insect repellent: N,N-diethyl-meta-toluamide (DEET). The analytes are first deconjugated by incubating with acetate/β-glucuronidase buffer at 37°C for 17 h. The deconjugated analytes are extracted and concentrated from the urine matrix using solid-phase extraction cartridges, separated through C18 reversed phase HPLC, and analysed on MS/MS. The MS/MS was operated in positive and negative electrospray ionisation switch mode. Two ions from each analyte and one from each labelled internal standard are monitored for quantification and confirmation. The limit of detections (LODs) for all the analytes are in the low parts-per-trillion (0.05 ng/mL) except TCPy where it was 0.5 ng/mL) with a wide linear range (0.05 up to 40 ng/mL) and provides high accuracy (recoveries: 90–118%) and high precision (coefficient of variation <15%). The method accuracy was also verified by the analysis of proficiency testing urine samples. We analysed 101 urine samples for a recent California study cohort, and detection frequencies ranged from ~100% to 0%: 3-PBA (98%), IMPY (91%), TCPy, (89%), DCPAA (66%), 4-F-3-PBA (11%), TCPAA (0%).  相似文献   

11.
Levo ‐tetrahydropalmatine (l‐ THP) is an alkaloid isolated from Chinese medicinal herbs of the Corydalis and Stephania genera. It has been used in China for more than 40 years mainly as an analgesic with sedative/hypnotic effects. Despite its extensive use, its metabolism has not been quantitatively studied, nor there a sensitive reliable bioanalytical method for its quantification simultaneously with its metabolites. As such, the objective of this study was to develop and validate a sensitive and selective HPLC method for simultaneous quantification of l‐ THP and its desmethyl metabolites l‐ corydalmine (l‐ CD) and l‐ corypalmine (l‐ CP) in rat plasma and brain tissues. Rat plasma and brain samples were processed by liquid–liquid extraction using ethyl acetate. Chromatographic separation was achieved on a reversed‐phase Symmetry® C18 column (4.6 × 150 mm, 5 μm) at 25°C. The mobile phase consisted of acetonitrile–methanol–10 mm ammonium phosphate (pH 3) (10:30:60, v /v) and was used at a flow rate of 0.8 mL/min. The column eluent was monitored at excitation and emission wavelengths of 230 and 315 nm, respectively. The calibration curves were linear over the concentration range of 1–10,000 ng/mL. The intra‐ and interday reproducibility studies demonstrated accuracy and precision within the acceptance criteria of bioanalytical guidelines. The validated HPLC method was successfully applied to analyze samples from a pharmacokinetic study of l‐ THP in rats. Taken together, the developed method can be applied for bioanalysis of l‐ THP and its metabolites in rodents and potentially can be transferred for bioanalysis of human samples.  相似文献   

12.
A method for the detection of unlabeled and 15N2‐labeled l ‐tryptophan (l ‐Trp), l ‐kynurenine (l ‐Kyn), serotonin (5‐HT) and quinolinic acid (QA) in human and rat plasma by GC/MS is described. Labeled and unlabeled versions of these four products were analyzed as their acyl substitution derivatives using pentafluoropropionic anhydride and 2,2,3,3,3‐pentafluoro‐1‐propanol. Products were then separated by GC and analyzed by selected ion monitoring using negative ion chemical ionization mass spectrometry. l ‐[13C11, 15N2]‐Trp, methyl‐serotonin and 3,5‐pyridinedicarboxylic acid were used as internal standards for this method. The coefficients of variation for inter‐assay repeatability were found to be approximately 5.2% for l ‐Trp and 15N2‐Trp, 17.1% for l ‐Kyn, 16.9% for 5‐HT and 5.8% for QA (n = 2). We used this method to determine isotope enrichments in plasma l ‐Trp over the course of a continuous, intravenous infusion of l ‐[15N2]Trp in pregnant rat in the fasting state. Plasma 15N2‐Trp enrichment reached a plateau at 120 min. The free Trp appearance rate (Ra) into plasma was 49.5 ± 3.35 µmol/kg/h. The GC/MS method was applied to determine the enrichment of 15N‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA concurrently with the concentration of non‐labeled l ‐Trp, l ‐Kyn, 5‐HT and QA in plasma. This method may help improve our understanding on l ‐Trp metabolism in vivo in animals and humans and potentially reveal the relative contribution of the four pathways of l ‐Trp metabolism. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

13.
A rapid and sensitive LC–MS/MS method for therapeutic drug monitoring oral vinorelbine (VRL) metronomic anticancer chemotherapy has been developed and validated. Analysis of VRL and its main active metabolite 4‐O‐deacetylvinorelbine (M1) was performed in whole blood matrix. Both analytes were extracted by protein precipitation and separated on an Onyx monolith C18, 50 × 2 mm column then quantified by positive electrospray ionization and multiple reaction monitoring mode. The LLOQ was 0.05 ng/mL for both VRL and M1. Linearity was up to 25ng/mL with R2 ≥ 0.994. The intra‐ and inter‐assay precisions were ≤ 11.6 and ≤ 10.4% while the ranges of accuracy were [−8.7%; 10.3%] and [−10.0; 7.4%] for VRL and M1, respectively. The clinical suitability of the method has been proved by the determination of the CTrough blood concentrations of VRL and M1 in 64 nonsmall cell lung cancer elderly patients. The analytical performance of the assay was suitable for pharmacokinetic monitoring of VRL and M1, allowing the personalization of the VRL metronomic treatments.  相似文献   

14.
In this paper, we present a validated UPLC‐MS/MS assay for determination of ramipril and ramiprilat from human plasma samples. The assay is capable of isolating phase II metabolites (acylglucornides) of ramipril from in vivo study samples which is otherwise not possible using conventional HPLC conditions. Both analytes were extracted from human plasma using solid‐phase extraction technique. Chromatographic separation of analytes and their respective internal standards was carried out using an Acquity UPLC BEH C18 (2.1 × 100 mm), 1.7 µm column followed by mass spectrometric detection using an Waters Quattro Premier XE. The method was validated over the range 0.35–70.0 ng/mL for ramipril and 1.0–40.0 ng/mL for ramiprilat. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
A rapid, selective and sensitive hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass spectrometry (MS/MS) method was developed to determine 1‐13C‐l ‐methionine in rat serum. Proteins in serum were precipitated using acetonitrile and the supernatant was separated after centrifugation. 1‐13C‐l ‐phenylalnine was used as the internal standard. HILIC–tandem mass spectrometry analysis was performed on a hydrophilic interaction silica column (TSK‐GEL AMIDE‐80) using a linear gradient elution system, acetonitrile−5 mm ammonium acetate containing 0.1% formic acid and multiple reaction monitoring mode for 1‐13C‐l ‐methionine and 1‐13C‐l ‐phenylalnine. The assay was validated with a linear range between 10 and 150 ng mL−1 (r ≥ 0.99) and a lower limit of quantification of 10 ng mL−1, calculated with weighted (1/x2) least squares linear regression. The RSD of intra‐day precision was smaller than 3.6% and the inter‐day RSD less than 6.5%, while the average recovery was 100.48% with an RSD of accuracy within 2.9%, determined from quality control samples. The HILIC‐MS/MS method was fully validated and successfully applied to the in vivo pharmacokinetic study of stable‐isotope 1‐13C‐l ‐methionine in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
A single LC–MS/MS assay has been developed and validated for the simultaneous determination of metformin and dapagliflozin in human plasma using ion‐pair solid‐phase extraction. Chromatographic separation of the analytes and their internal standards was carried out on a reversed‐phase ACE 5CN (150 × 4.6 mm, 5 μm) column using acetonitrile–15 mm ammonium acetate, pH 4.5 (70:30, v/v) as the mobile phase. To achieve higher sensitivity and selectivity for the analytes, mass spectrometric analysis was performed using a polarity switching approach. Ion transitions studied using multiple reaction monitoring mode were m/z 130.1 [M + H]+/60.1 for metformin and m/z 467.1 [M + CH3COO]?/329.1 for dapagliflozin in the positive and negative modes, respectively. The linear calibration range of the assay was established from 1.00 to 2000 ng/mL for metformin and from 0.10 to 200 ng/mL for dapagliflozin to achieve a better assessment of the pharmacokinetics of the drugs. The limit of detection and limit of quantitation for the analytes were 0.39 and 1.0 ng/mL for metformin and 0.03 and 0.1 ng/mL for dapagliflozin, respectively. There was no interference of plasma matrix obtained from different sources, including hemolyzed and lipemic plasma. The method was successfully applied to study the effect of food on the pharmacokinetics of metformin and dapagliflozin in healthy subjects.  相似文献   

17.
A simple, rapid and sensitive liquid chromatography–tandem mass spectrometric (LC‐MS/MS) assay method has been developed and fully validated for the simultaneous quantification of tetrabenazine and its active metabolites α‐dihydrotetrabenazine and β‐dihydrotetrabenazine in human plasma. Tetrabenazine d7 was used as internal standard (IS). The analytes were extracted from 200 μL aliquots of human plasma via solid‐phase extraction using C18 solid‐phase extraction cartridges. The reconstituted samples were chromatographed on a Zorbax SB C18 column using a 60:40 (v/v) mixture of acetonitrile and 5 mm ammonium acetate as the mobile phase at a flow rate of 0.8 mL/min. The API‐4000 LC‐MS/MS in multiple reaction‐monitoring mode was used for detection. The calibration curves obtained were linear (r2 ≥ 0.99) over the concentration range of 0.01–5.03 ng/mL for tetrabenazine and 0.50–100 ng/mL for α‐dihydrotetrabenazine and β‐dihydrotetrabenazine. Method validation was performed as per Food and Drug Administration guidelines and the results met the acceptance criteria. The method is precise and sensitive enough for its intended purpose. A run time of 2.5 min for each sample made it possible to analyze more than 300 plasma samples per day. The proposed method was found to be applicable to clinical studies. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

18.
A simple and rapid liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method was developed and validated for the simultaneous determination of sunitinib and its two metabolites in plasma of Chinese patients with metastatic renal cell carcinoma (mRCC). After simple one‐step protein precipitation with methanol–acetonitrile (1:1, v/v), all three analytes were separated on an Agilent Zorbax SB‐C18 column using a gradient mobile phase consisting of water (0.1% formic acid)–acetonitrile (0.1% formic acid) at a flow rate of 0.50 mL/min. The detection was performed in multiple reaction monitoring mode, using the transitions of m/z 399.0 → 326.2, m/z 371.0 → 283.1, m/z 343.0 → 283.1 and m/z 386.3 → 122.2 for sunitinib, M1, M2 and buspirone, respectively. The method was linear over the range of 0.10–100 ng/mL for all three analytes using only 50 μL of plasma and the lower limit of quantifications for the three analytes were all 0.10 ng/mL. The intra‐day and inter‐day precisions were all less than 15% and the accuracies were within the range of ±15%; recoveries were between 85.0 and 115%. The validated method was successfully applied to an explorative pharmacokinetic study of sunitinib in Chinese patients with mRCC following multi‐dose oral administration. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
A simple, sensitive and selective high‐performance liquid chromatography electrospray ionization tandem mass spectrometry (LC‐MS/MS) method was developed for simultaneous determination and pharmacokinetic study of caffeic acid (CA) and its active metabolites. The separation with isocratic elution used a mobile phase composed of methanol and water (containing 0.1% formic acid) at a flow rate of 0.2 mL/min. The detection of target compounds was done in selected reaction monitoring (SRM) mode. The SRM detection was operated in the negative electrospray ionization mode using the transitions m/z 179 ([M ? H]?) → 135 for CA, m/z 193 ([M ? H]?) → 134.8 for ferulic acid and isoferulic acid and m/z 153 ([M ? H]?) → 108 for protocatechuic acid. The method was linear for all analytes over the investigated range with all correlation coefficients 0.9931. The lower limits of quantification were 5.0 ng/mL for analytes. The intra‐ and inter‐day precisions (relative standard deviation) were <5.86 and <6.52%, and accuracy (relative error) was between ?5.95 and 0.35% (n = 6). The developed method was applied to study the pharmacokinetics of CA and its major active metabolites in rat plasma after oral and intravenous administration of CA. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
A sensitive and selective liquid chromatography–tandem mass spectrometry (LC‐MS/MS) method for the simultaneous determination of metacavir and its two metabolites in rat plasma was developed and validated. Tinidazole was used as an internal standard and plasma samples were pretreated with one‐step liquid–liquid extraction. In addition, these analytes were separated using an isocratic mobile phase on a reverse‐phase C18 column and analyzed by MS in the selected reaction monitoring mode. The monitored precursor to product‐ion transitions for metacavir, 2′,3′‐dideoxyguanosine, O‐methylguanine and the internal standard were m/z 266.0 → 166.0, m/z 252.0 → 152.0, m/z 166.0 → 149.0 and m/z 248.0 → 202.0, respectively. The standard curves were found to be linear in the range of 1–1000 ng/mL for metacavir, 5–5000 ng/mL for 2′,3′‐dideoxyguanosine and 1–1000 ng/mL for O‐methylguanine in rat plasma. The precision and accuracy for both within‐ and between‐batch determination of all analytes ranged from 2.83 to 9.19% and from 95.86 to 111.27%, respectively. No significant matrix effect was observed. This developed method was successfully applied to an in vivo pharmacokinetic study after a single intravenous dose of 20 mg/kg metacavir in rats. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号