首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The feasibility of carrying out nucleophilic addition from electron‐deficient heteroaromatics has been addressed through a detailed investigation of the interaction of a two 7‐substituted‐nitrobenzofurazan (R = OMe 2a ; R = Cl 2b ) with a series of substituted‐nitroaryl anions (X = 4‐NO2 1a ; X = 3‐NO2 1b ; X = 4‐CN 1c ; X = 4‐Br 1d ), all reactions first lead to the quantitative formation of the σ‐adducts 3a–d and 4a–d arising from covalent addition of the nucleophile to the C‐5 carbon. The rate and equilibrium constants for the formation of σ‐adducts 3a–d and 4a–d (k5, K 5 ) together with the rate constants for their decomposition (k?5) have been determined in methanol at 25°C, allowing a determination of intrinsic rate constants, k0 = 0.03, the lower k0 value reflects the very strong salvation by methanol of the negative charge on the nitro group. The discovery of a linear correlation between the E and pKaMeOH parameters allows a calibration of the electrophilicity power of 2a and 2b , E = ?11.67 and ?10.29, respectively. Applying the general approach to nucleophilicity/electrophilicity recently developed by Mayr et al. through the relationship log k = s(E + N), a successful ranking of our nitroaryl anions 1a–d on the general nucleophilicity scale (N) has been carried out. The N values of 1a–d are found to cover a range from 15.78 to 16.69. The results are compared with previously reported data in water and DMSO.  相似文献   

2.
The second-order rate constants (k) for reaction of 7-chloro-4-nitrobenzofurazan 1 and 7-methoxy-4-nitrobenzofurazan 2 with a series of nitroalkyl anions and several of para-substituted phenoxide anions in aqueous solution at 20 °C have been reported. On the basis of the linear novel approach recently designed by Mayr and coworkers, the electrophilicity parameters E at the C-5 position of the two nitrobenzofurazans 1 and 2 have been quantified and ranked on the comprehensive electrophilicity scale. Mayr's approach was found to correctly predict the rate constants for the addition of phenoxide anions at the C-5 position of 1 and 2 witting a factor of <2. Analysis of the kinetic measurements using Brønsted's model shows that βnuc values remain remarkably constant for changes in the nature of the substituent and that the σ-complexation process is associated with high Marcus intrinsic barriers. In addition, satisfactory correlations between the log kexp (kexp values measured in this work for reactions of benzofurazans 1 and 2 with a series of phenoxide anions in aqueous solution at 20 °C) and log kcalcd (kcalcd values calculated from equation 1 using the electrophilicity parameters E of benzofurazans 1 and 2 and the previously published nucleophilicity parameters N and sN of the phenoxide anions) with a slope very close to unity have been obtained and discussed.  相似文献   

3.
Kinetic studies for the azo‐coupling reactions of 3‐ethoxythiophene 1 with a series of 4‐X‐substituted diazonium cations 2a‐e (X = OCH3, CH3, H, Cl, and NO2) have been investigated in acetonitrile at 20°C. The second‐order rate constants have been employed to determine the nucleophilicity parameters N and s of the thiophene 1 according the Mayr equation. Thus, the nucleophile‐specific parameters N and s of thiophene 1 have been derived and compared with the reactivities of other C‐nucleophiles in acetonitrile (pyrroles, furan, indoles, etc.). The Yukawa–Tsuno plot resulted in an excellent correlation (R2 = 0.9980) with an r value of 0.89, suggesting that the nonlinear Hammett plot observed in the present work is due to resonance demand of the π–electron donor substituent of on the –N2+ moiety. Importantly, using the concept of global electrophilicity (ω) proposed by Parr, we successfully predict the electrophilicity parameters E of seven substituted diazonium cations whose experimental data are available.  相似文献   

4.
Quantitative nucleophilicity scales are fundamental to organic chemistry and are usually constructed on the basis of Mayr’s equation [log k=s(N+E)] by using benzhydrylium ions as reference electrophiles. Here an ab initio protocol was developed for the first time to predict the nucleophilicity parameters N of various π nucleophiles in CH2Cl2 through transition‐state calculations. The optimized theoretical model (BH&HLYP/6‐311++G(3df,2p)//B3LYP/6‐311+G(d,p)/PCM/UAHF) could predict the N values of structurally unrelated π nucleophiles within a precision of ca. 1.14 units and therefore may find applications for the prediction of nucleophilicity of compounds that are not readily amenable to experimental characterization. The success in predicting N parameters from first principles also allowed us to analyze in depth the electrostatic, steric, and solvation energies involved in electrophile–nucleophile reactions. We found that solvation does not play an important role in the validity of Mayr’s equation. On the other hand, the correlations of the E, N, and log k values with the energies of the frontier molecular orbitals indicated that electrostatic/charge‐transfer interactions play vital roles in Mayr’s equation. Surprising correlations observed between the electrophile–nucleophile C? C distances in the transition state, the activation energy barriers, and the E and N parameters indicate the importance of steric interactions in Mayr’s equation. A method is then proposed to separate the attraction and repulsion energies in the nucleophile–electrophile interaction. It was found that the attraction energy correlated with N+E, whereas the repulsion energy correlated to the s parameter.  相似文献   

5.
Second‐order rate constants (k1) have been measured spectrophotometrically for reactions of 2‐methoxy‐3‐X‐5‐nitrothiophene 1a‐c (X = NO2, CN, and COCH3) with secondary cyclic amines (pyrrolidine 2a , piperidine 2b , and morpholine 2 c ) in CH3CN and 91:9 (v/v) CH3OH/CH3CN at 20°C. The experimental data show that the rate constants (k1) values exhibit good correlation with the parameters of nucphilicity (N) of the amines 2a‐c and are consistent with the Mayr's relationship log k (20°C) = s(E + N). We have shown that the electrophilicity parameters E derived for 1a–c and those reported previously for the thiophenes 1d‐g (X = SO2CH3, CO2CH3, CONH2, and H) are linearly related to the pKa values for their gem‐dimethoxy complexes in methanol. Using this correlation, we successfully evaluated the electrophilicity E values of 12 structurally diverse electrophiles in methanol for the first time. In addition, a satisfactory linear correlation (r2 = 0.9726) between the experimental (log kexp) and the calculated (log kcalcd) values for the σ‐complexation reactions of these 12 electrophiles with methoxide ion in methanol has been observed and discussed.  相似文献   

6.
Nucleophilicity parameters (N, sN) of a group of representative diazaphospholenium hydrides were derived by kinetic investigations of their hydride transfer to a series of reference electrophiles with known electrophilicity (E) values, using the Mayr equation log k2=sN(N+E). The N scale covers over ten N units, ranging from the most reactive hydride donor (N=25.5) to the least of the scale (N=13.5). This discloses the highest N value ever quantified in terms of Mayr's nucleophilicity scales reported for neutral transition‐metal‐free hydride donors and implies an exceptional reactivity of this reagent. Even the least reactive hydride donor of this series is still a better hydride donor than those of many other nucleophiles such as the C?H, B?H, Si?H and transition‐metal M?H hydride donors. Structure–reactivity analysis reveals that the outstanding hydricity of 2‐H‐1,3,2‐diazaphospholene benefits from the unsaturated skeleton.  相似文献   

7.
Deprotonated glutathione is among the most potent biological nucleophiles and plays an important physiological role in cellular detoxification by forming covalent conjugates with Michael acceptors. The electrophilicity E of various Michael acceptors was characterized recently according to the Patz–Mayr relation lg k2=sN(N+E). We now determined the nucleophilic reactivity (N, sN) of glutathione (GSH) in aqueous solution at 20 °C to connect published GSH reactivities (kGSH) with Mayr's electrophilicity scale (E). In this way, electrophilicities E of more than 70 Michael acceptors could be estimated, which can now be used to systematically predict novel reactions with the multitude of nucleophiles whose nucleophilicity parameters N/sN are known.  相似文献   

8.
The kinetics and stereochemistry of the reactions of iminium ions derived from cinnamaldehydes and MacMillan's imidazolidinones with diphenyldiazomethane and aryldiazomethanes were investigated experimentally and with DFT calculations. The reactions of diphenyldiazomethane with iminium ions derived from MacMillan's second‐generation catalysts gave 3‐aryl‐2,2‐diphenylcyclopropanecarbaldehydes with yields >90 % and enantiomeric ratios of ≥90:10. Predominantly 2:1 products were obtained from the corresponding reactions with monoaryldiazomethanes. The measured rate constants are in good agreement with the rate constants derived from the one‐center nucleophilicity parameters N and sN of diazomethanes and the one‐center electrophilicity parameters E of iminium ions as well as with quantum chemically calculated activation energies.  相似文献   

9.
The kinetics of the reactions of the azodicarboxylates 1 with the enamines 2 have been studied in CH3CN at 20 °C. The reactions follow a second‐order rate law and can be described by the linear free energy relationship log k2(20 °C)=s(N+E) (E=electrophilicity parameter, N=nucleophilicity parameter, and s=nucleophile‐specific slope parameter). With E parameters from ?12.2 to ?8.9, the electrophilic reactivities of 1 turned out to be comparable to those of α,β‐unsaturated iminium ions, amino‐substituted benzhydrylium ions, and ordinary Michael acceptors. While the E parameters of the azodicarboxylates 1 determined in this work also hold for their reactions with triarylphosphines, they cannot be used for estimating rate constants for their reactions with amines. Comparison of experimental and calculated rate constants for cycloadditions and ene reactions of azodicarboxylates provides information on the concertedness of these reactions.  相似文献   

10.
The kinetics of the reactions of 4-nitrobenzofurazane 1a , 4-nitrobenzothiadiazole 1b , and 4-nitrobenzoselenadiazole 1c with a series of 4-Y-substituted phenoxide anions 2a-e (Y = OMe, Me, H, Cl, and CN) in aqueous solution at 20°C were investigated photometrically. The derived second-order rate constants (k2) have been combined with the nucleophilicity parameters values of these series of anions 2a-e to determine the electrophilicity parameters E of electrophiles 1a-c according to the linear free-energy relationship (log k2)/s versus N. General reactivity of these electrophiles 1a-c is found to be fairly similar with E values ranging in −10.77 ± 0.61 < E < −7.53 ± 0.29. The comparison with structurally related neutral electron-deficient heteroaromatic and aromatic compounds revealed that 1a - c are more reactive than 1,3,5-trinitrobenzene, as benchmark aromatic electrophile used in nucleophilic addition or substitution processes. The rate constants for the reactions of 4-nitrobenzochalcogenadiazoles 1a-c with some other nucleophiles were measured and found to agree with those calculated from Mayr's equation. Finally, analysis of the rate data in terms of the Brønsted approach reveals that 1a-c exhibits especially low intrinsic reactivity in σ-adducts 3 forming reactions.  相似文献   

11.
The reactions of quinuclidines with phenyl, 4-methylphenyl, and 4-chlorophenyl 2,4-dinitrophenyl carbonates are kinetically evaluated in aqueous solution. The Brønsted-type plots (log kN vs pKa of quinuclidinium ions) are linear. The magnitude of the slopes and validated theoretical scales of electrophilicity and nucleophilicity confirm the concerted nature of these reactions.  相似文献   

12.
Nucleophilicity and electrophilicity dictate the reactivity of polar organic reactions. In the past decades, Mayr et al. established a quantitative scale for nucleophilicity (N) and electrophilicity (E), which proved to be a useful tool for the rationalization of chemical reactivity. In this study, a holistic prediction model was developed through a machine-learning approach. rSPOC, an ensemble molecular representation with structural, physicochemical and solvent features, was developed for this purpose. With 1115 nucleophiles, 285 electrophiles, and 22 solvents, the dataset is currently the largest one for reactivity prediction. The rSPOC model trained with the Extra Trees algorithm showed high accuracy in predicting Mayr's N and E parameters with R2 of 0.92 and 0.93, MAE of 1.45 and 1.45, respectively. Furthermore, the practical applications of the model, for instance, nucleophilicity prediction of NADH, NADPH and a series of enamines showed potential in predicting molecules with unknown reactivity within seconds. An online prediction platform (http://isyn.luoszgroup.com/) was constructed based on the current model, which is available free to the scientific community.  相似文献   

13.
A kinetic study of the reactions of potentially bioactive 2-amino-4-arylthiazoles with highly reactive 4,6-dinitrobenzofuroxan (DNBF) is reported herein in acetonitrile solution. The complexation reaction was followed by recording the UV–vis spectra with time at λmax = 482 nm. Electronic effects of substituents influencing the rate of reaction have been studied using structure-reactivity relationships. It is shown that the Hammett plot relative to the reaction of DNBF with 2-amino-4-(4-chlorophenyl)thiazole exhibit positive deviation from the log k1 versus σ correlation, while it showed excellent linear correlation in terms of Yukawa–Tsuno equation. It has be noticed that the nonlinear Hammett plot observed for 2-amino-4-(4-chlorophenyl) thiazole is not attributed to a change in rate-determining step but is due to nature of electronic effect of substituent caused by the resonance of stabilization of substrates. The second-order rate constant (k1) relating to the bond C–C and C-N forming step of the complexation processes of DNBF with 4-substituted-aminothiazoles and 2-amino-5-methyl-4-phenylthiazole, respectively, is fit into the linear relationship log k = sN (N + E), thereby permitting the assessment of the nucleophilicity parameter (N) of the 2-amino-4-arylthiazoles of the range (4.90 < N < 6.85). 2-amino-4-arylthiazoles is subsequently ranked by positioning its reactivity on the general nucleophilicity scale developed recently by Mayr and coworkers (2003) leading an interesting and a direct comparison over a large domain of π-, σ -, and n-nucleophiles. The global electrophilicity/nucleophilicity reactivity indexes of the 2-amino-4-arylthiazoles have been investigated by means of a density functional theory (DFT) method. .  相似文献   

14.
Donor‐substituted diarylcarbenium ions Ar2CH+ react with ynamides to give 1‐amido‐substituted allyl cations (α,β‐unsaturated iminium ions). Kinetic studies show that these adducts, which correspond to the addition of a C? H bond across the C?C bond, are formed stepwise with initial formation of keteniminium ions and subsequent 1,3‐hydride shifts. The linear correlations between the second‐order rate constants (lg k2, 20 °C) with the electrophilicity parameters E of the diarylcarbenium ions allow us to include ynamides in our comprehensive nucleophilicity scale and thus predict potential electrophilic reaction partners.  相似文献   

15.
Kinetic studies for the Michael‐type reactions of ethyl‐3‐(4′‐N,N‐dimethylaminophenyl)‐2‐(nonafluorobutane)sulfonylpro‐penoate 1 with 4‐X‐substituted anilines 2a–e (X = OCH3, CH3, H, F, and Cl) have been investigated in acetonitrile at 20°C. A quadratic dependence of the pseudo–first‐order rate constants (kobsd) versus [ 2a–e ] has been observed and has been interpreted in terms of a dimer nucleophile mechanism. The finding of a relatively large negative ρ value (?3.09) for the Hammett plot suggests that the intermediate ( I± ) is highly zwitterionic in nature. A linear correlation (r2 = 0.9989) between the Hammett's substituent constants σ and nucleophilicity parameters N of 4‐X‐substituted anilines in acetonitrile has been observed. The electrophilicity parameters E of the olefin 1 is evaluated, using the correlations σ versus N and log k versus σ and compared with the electrophilicities of analogously Michael acceptors.  相似文献   

16.
Kinetic investigations of the reactions of (prop‐2‐enyl)dicarbonyl(cyclopentadienyl)iron complexes 1 with benzhydrylium ions 3 , and of dicarbonyl(cyclopentadienyl)[(1,2‐η)propene]iron(II) tetrafluoroborate ( 9 ⋅BF4) with π‐nucleophiles have been performed to elucidate the magnitude of the β‐effect of the [(CO)2FeCp] group (Fp group). Introduction of the Fp group into the allylic position of propene and 2‐methylpropene increases the nucleophilicity of the π‐bonds by nine and six orders of magnitude, respectively, with the result that the allyl‐Fp complexes 1a (N=6.78) and 1b (N=8.45) are among the strongest neutral π‐nucleophiles. Replacement of one β‐H‐atom in the isopropyl cation by the Fp group reduces the electrophilicity by more than 20 orders of magnitude, so that 9 + ranks among the weakest cationic C‐electrophiles (E=−11.2).  相似文献   

17.
A kinetic study is reported for the reactions of 2-methoxy-3-nitropyridine 1a and 2-methoxy-5-nitropyridine 1b with three secondary amines 2a–c (morpholine, piperidine, and pyrrolidine) in aqueous solution at 20°C. The Brønsted-type plots are linear with βnuc = 0.52 and 0.55 for pyridines 1a and 1b , respectively, indicating that the reaction proceeds through a SNAr mechanism in which the first step is the rate-determining step. Additional theoretical calculations using the DFT/B3LYP method confirm that the C-2 carbon being the most electrophilic center for the both pyridines 1a and 1b . The second-order rate constants have been used to evaluate the electrophilicity parameters E of 1a and 1b according to the linear free energy relationship log k (20°C) = sN (N + E). The E parameters thus derived are compared with the electrophilic reactivities of a large variety of anisoles. The validity of these E values has been satisfactorily verified by comparison of calculated and experimental second-order rate constants for the reactions of pyridines 1a and 1b with anion of ethyl benzylacetate.  相似文献   

18.
The nucleophilicity of hydroxamate ions toward ethyl 4-nitrophenyl ethylphosphonate, diethyl 4-nitrophenyl phosphate, and 4-nitrophenyl 4-toluenesulfonate in water (µ=1, KCl, 25°C) is described by the Brø nsted equation (N=0.54, 0.70, and 0.59, respectively). In these reactions, hydroxamate ions act as typical -nucleophiles; they are more reactive than phenoxide ions with the same basicity by a factor of 300 to 800. In the series of hydroxamate ions, an anomalously high nucleophilicity was revealed for the anions possessing catalytic centers (in terms of general base catalysis), which are capable of providing anchimeric assistance in the transition state. An equation has been proposed, which relates the efficiency of such assistance in anions derived from aminohydroxamic acids to the pK a values characterizing their acidic and basic groups.Translated from Zhurnal Organicheskoi Khimii, Vol. 40, No. 9, 2004, pp. 1384–1396.Original Russian Text Copyright © 2004 by Simanenko, Prokopeva, Popov, Bunton, Karpichev, Savelova, Ghosh.Deceased.This study was performed under financial support by the US Civil Research and Development Foundation (CRDF) (grant no. UC2-2489-DO-03).  相似文献   

19.
TiCl4‐induced Baylis–Hillman reactions of α,β‐unsaturated carbonyl compounds with aldehydes yield the (Z)‐2‐(chloromethyl)vinyl carbonyl compounds 5 , which react with 1,4‐diazabicyclo[2.2.2]octane (DABCO), quinuclidine, and pyridines to give the allylammonium ions 6 . Their combination with less than one equivalent of the potassium salts of stabilized carbanions (e.g. malonate) yields methylene derivatives 8 under kinetically controlled conditions (SN2’ reactions). When more than one equivalent of the carbanions is used, a second SN2’ reaction converts 8 into their thermodynamically more stable allyl isomers 9 . The second‐order rate constants for the reactions of 6 with carbanions have been determined photometrically in DMSO. With these rate constants and the previously reported nucleophile‐specific parameters N and s for the stabilized carbanions, the correlation log k (20 °C)=s(N + E) allowed us to calculate the electrophilicity parameters E for the allylammonium ions 6 (?19<E <?18). The kinetic data indicate the SN2’ reactions to proceed via an addition–elimination mechanism with a rate‐determining addition step.  相似文献   

20.
Rates of hydride transfer from several hydride donors to benzhydrylium ions have been measured at 20 °C and used for the determination of empirical nucleophilicity parameters N and sN according to the linear free energy relationship log k20 °C=sN(N+E). Comparison of the rate constants of hydride abstraction by tritylium ions with those calculated from the reactivity parameters sN, N, and E showed fair agreement. Therefore, it was possible to convert the large number of literature data on hydride abstraction by tritylium ions into N and sN parameters for the corresponding hydride donors, and construct a reactivity scale for hydride donors covering more than 20 orders of magnitude.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号