首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
Electrophoretic mobilities of amyloid‐beta (1‐40) and (1‐42) peptides and their aggregates are modeled to study the amyloidogenic pathway associated with Alzheimer´s Disease. The near molecule pH generated by the intraparticle charge regulation phenomenon during the oligomerization of amyloid‐beta (1‐40) and (1‐42) peptides is evaluated and discussed as a relevant mechanism supporting the “amyloid cascade hypothesis” proposed in the literature. A theoretical framework associated with the oligomerization of amyloid‐beta peptides including simple scaling laws and the consideration of electrokinetic and hydrodynamic global properties of oligomers is presented. The central finding is the explanation of the near molecule pH change toward the pI when the oligomerization number increases. These results allow one to rationalize consecutive physical stages that validate the amyloid cascade hypothesis. Concluding remarks involving mainly the effects of pair and intraparticle charge regulation phenomena on the amyloidogenic pathway with some suggestions for future research are provided.  相似文献   

2.
In addition to the prototypic amyloid‐β (Aβ) peptides Aβ1–40 and Aβ1–42, several Aβ variants differing in their amino and carboxy termini have been described. Synthetic availability of an Aβ variant is often the key to study its role under physiological or pathological conditions. Herein, we report a protocol for the efficient solid‐phase peptide synthesis of the N‐terminally elongated Aβ‐peptides Aβ?3–38, Aβ?3–40, and Aβ?3–42. Biophysical characterization by NMR spectroscopy, CD spectroscopy, an aggregation assay, and electron microscopy revealed that all three peptides were prone to aggregation into amyloid fibrils. Immunoprecipitation, followed by mass spectrometry, indicated that Aβ?3–38 and Aβ?3–40 are generated by transfected cells even in the presence of a tripartite β‐site amyloid precursor protein cleaving enzyme 1 (BACE1) inhibitor. The elongated Aβ peptides starting at Val(?3) can be separated from N‐terminally‐truncated Aβ forms by high‐resolution isoelectric‐focusing techniques, despite virtually identical isoelectric points. The synthetic Aβ variants and the methods presented here are providing tools to advance our understanding of the potential roles of N‐terminally elongated Aβ variants in Alzheimer's disease.  相似文献   

3.
Amyloid peptides, Aβ1–40 and Aβ1–42, represent major molecular targets to develop potential drugs and diagnostic tools for Alzheimer’s Disease (AD). In fact, oligomeric and fibrillar aggregates generated by these peptides are amongst the principal components of amyloid plaques found post mortem in patients suffering from AD. Rosmarinic acid has been demonstrated to be effective in preventing the aggregation of amyloid peptides in vitro and to delay the progression of the disease in animal models. Nevertheless, no information is available about its molecular mechanism of action. Herein, we report the NMR characterization of the interaction of Salvia sclareoides extract and that of its major component, rosmarinic acid, with Aβ1–42 peptide, whose oligomers have been described as the most toxic Aβ species in vivo. Our data shed light on the structural determinants of rosmarinic acid–Aβ1–42 oligomers interaction, thus allowing the elucidation of its mechanism of action. They also provide important information for the rational design of new compounds with higher affinity for Aβ peptides to generate new anti‐amyloidogenic molecules and/or molecular tools for the specific targeting of amyloid aggregates in vivo. In addition, we identified methyl caffeate, another natural compound present in different plants and human diet, as a good ligand of Aβ1–42 oligomers, which also shows anti‐amyloidogenic activity. Finally, we demonstrated the possibility to exploit STD‐NMR and trNOESY experiments to screen extracts from natural sources for the presence of Aβ peptide ligands.  相似文献   

4.
Type 2 diabetes (T2D) and Alzheimer's disease (AD) belong to the 10 deadliest diseases and are sorely lacking in effective treatments. Both pathologies are part of the degenerative disorders named amyloidoses, which involve the misfolding and the aggregation of amyloid peptides, hIAPP for T2D and Aβ1-42 for AD. While hIAPP and Aβ1-42 inhibitors have been essentially designed to target β-sheet-rich structures composing the toxic amyloid oligomers and fibrils of these peptides, the strategy aiming at trapping the non-toxic monomers in their helical native conformation has been rarely explored. We report herein the first example of helical foldamers as dual inhibitors of hIAPP and Aβ1-42 aggregation and able to preserve the monomeric species of both amyloid peptides. A foldamer composed of 4-amino(methyl)-1,3-thiazole-5-carboxylic acid (ATC) units, adopting a 9-helix structure reminiscent of 310 helix, was remarkable as demonstrated by biophysical assays combining thioflavin-T fluorescence, transmission electronic microscopy, capillary electrophoresis and mass spectrometry.  相似文献   

5.
《Electroanalysis》2017,29(12):2906-2912
The aggregation of amyloid‐β peptide (Aβ) is believed to play a crucial role in the Alzheimer's disease (AD) pathogenesis and is considered as a therapeutic target for treating AD. The Aβ electrooxidation via a Tyr‐10 residue, sensitive to a depletion of a pool of Aβ monomers and oligomers in the course of Aβ aggregation, may be employed for testing natural and synthetic organic compounds (including short peptides) potentially able to inhibit the pathological Aβ aggregation (antiaggregants). In the present work, using the known peptide antiaggregant RGKLVFFGR‐NH2 (OR2) and its scrambled variant KGLRVGFRF‐NH2 as a control, we demonstrate that the electrochemical method based on electrooxidation of an Aβ42 Tyr‐10 residue, when combined with methods allowing for the evaluation of the Aβ42 aggregate structure and size, can provide essential information regarding the antiaggregant impact on Aβ42 aggregation. Electrochemical measurements were performed using square wave voltammetry on carbon screen printed electrodes whereas the Aβ42 aggregate structure and size were analyzed by means of the conventional thioflavin T (ThT) based fluorescence assay and dynamic light scattering. While inhibiting Aβ42 fibrillation as manifested by the unchanged level of ThT fluorescence, the OR2 peptide antiaggregant had no effect on the decrease of Aβ42 electrooxidation current in the course of Aβ42 aggregation. These observations suggest that OR2 does not stop the aggregation but redirects it into a pathway where amorphous rather than fibrillar aggregates are formed. Hence, the direct electrochemistry appears to offer a simple and cost‐effective approach for probing potential peptide antiaggregants, which is complementary to methods based on detecting Aβ aggregates.  相似文献   

6.
The aggregation pathways of neurodegenerative peptides determine the disease etiology, and their better understanding can lead to strategies for early disease treatment. Previous research has allowed modelling of hypothetic aggregation pathways. However, their direct experimental observation has been elusive owing to methodological limitations. Herein, we demonstrate that nanoscale chemical mapping by tip‐enhanced Raman spectroscopy of single amyloid fibrils at various stages of aggregation captures the fibril formation process. We identify changes in TERS/Raman marker bands for Aβ1‐42, including the amide III band (above 1255 cm?1 for turns/random coil and below 1255 cm?1 for β‐sheet conformation). The spatial distribution of β‐sheets in aggregates is determined, allowing verification of a particular fibrillogenesis pathway, starting from aggregation of monomers to meta‐stable oligomers, which then rearrange to ordered β‐sheets, already at the oligomeric or protofibrillar stage.  相似文献   

7.
A wealth of epidemiological evidence indicates a strong link between type 2 diabetes (T2D) and Alzheimer's disease (AD). The fiber deposition with cross‐β‐sheet structure formed by self‐aggregation and misfolding of amyloidogenic peptides is a common hallmark of both diseases. For the patients with T2D, the fibrils are mainly found in the islets of Langerhans that results from the accumulation of human islet amyloid polypeptide (hIAPP). The major component of aggregates located in the brain of AD patients is amyloid‐β (Aβ). Many biophysical and physiological properties are shared by hIAPP and Aβ, and both peptides show similar cytotoxic mechanisms. Therefore, it is meaningful to investigate the possible cross‐interactions of hIAPP and Aβ in both diseases. In this article, the segment 25–35 of Aβ was selected because Aβ25–35 was a core region in the process of amyloid formation and showed similar aggregation tendency and toxicity with full‐length Aβ. The electrospray ionization‐ion mobility‐mass spectrometry analysis and thioflavin T fluorescence kinetic analysis combined with transmission electron microscopy were used to explore the effects of the coexistence of Aβ25–35 and hIAPP on the self‐aggregation of both peptides and whether there was co‐assembly in fibrillation. The results indicated that the aggregation of hIAPP and Aβ25–35 had two nucleation stages in the binary mixtures. hIAPP and Aβ25–35 had a high binding affinity and a series of hetero‐oligomers formed in the mixtures of hIAPP and Aβ25–35 in the early stage. The cross‐reaction between hIAPP monomers and Aβ25–35 monomers as well as a little of oligomers during primary nucleation stage could accelerate the aggregation of Aβ25–35. However, owing to the obvious difference in aggregation ability between hIAPP and Aβ25–35, this cross‐interaction had no significant impact on the self‐assembly of hIAPP. Our study may offer a better understanding for exploring the molecular mechanism of the association between AD and T2D observed in clinical and epidemiological studies and developing therapeutic strategies against amyloid diseases.  相似文献   

8.
Accumulation of the β‐amyloid (Aβ) peptide in extracellular senile plaques rich in copper and zinc is a defining pathological feature of Alzheimer′s disease (AD). The Aβ1–x (x=16/28/40/42) peptides have been the primary focus of CuII binding studies for more than 15 years; however, the N‐truncated Aβ4–42 peptide is a major Aβ isoform detected in both healthy and diseased brains, and it contains a novel N‐terminal FRH sequence. Proteins with His at the third position are known to bind CuII avidly, with conditional log K values at pH 7.4 in the range of 11.0–14.6, which is much higher than that determined for Aβ1–x peptides. By using Aβ4–16 as a model, it was demonstrated that its FRH sequence stoichiometrically binds CuII with a conditional Kd value of 3×10−14 M at pH 7.4, and that both Aβ4–16 and Aβ4–42 possess negligible redox activity. Combined with the predominance of Aβ4–42 in the brain, our results suggest a physiological role for this isoform in metal homeostasis within the central nervous system.  相似文献   

9.
Accumulation of the β‐amyloid (Aβ) peptide in extracellular senile plaques rich in copper and zinc is a defining pathological feature of Alzheimer′s disease (AD). The Aβ1–x (x=16/28/40/42) peptides have been the primary focus of CuII binding studies for more than 15 years; however, the N‐truncated Aβ4–42 peptide is a major Aβ isoform detected in both healthy and diseased brains, and it contains a novel N‐terminal FRH sequence. Proteins with His at the third position are known to bind CuII avidly, with conditional log K values at pH 7.4 in the range of 11.0–14.6, which is much higher than that determined for Aβ1–x peptides. By using Aβ4–16 as a model, it was demonstrated that its FRH sequence stoichiometrically binds CuII with a conditional Kd value of 3×10?14 M at pH 7.4, and that both Aβ4–16 and Aβ4–42 possess negligible redox activity. Combined with the predominance of Aβ4–42 in the brain, our results suggest a physiological role for this isoform in metal homeostasis within the central nervous system.  相似文献   

10.
In this study, structural and mechanical properties of a series of models of Aβ42 (one‐ and two‐fold) and Aβ40 (two‐ and three‐fold) fibrils have been computed by using all‐atom molecular dynamics simulations. Based on calculations of the twist angle (θ) and periodicity (v=360d/θ), oligomers formed by 20, 11, and 13 monomers were found to be the smallest realistic models of three‐fold Aβ40, one‐fold Aβ42, and two‐fold Aβ42 fibrils, respectively. Our results predict that the Aβ40 fibrils initially exist in two staggered conformations [STAG(+2) and STAG(+1)] and then undergo a [STAG(+2)→STAG(+1)] transformation in a size‐dependent manner. The length of the loop region consisting of the residues 23–29 shrinks with the elongation of both Aβ40 and Aβ42 fibrils. A comparison of the computed potential energy suggests that a two‐fold Aβ40 aggregate is more stable than its three‐fold counterpart, and that Aβ42 oligomers can exist only in one‐fold conformation for aggregates of more than 11 monomers in length. The computed Young′s modulus and yield strengths of 50 GPa and 0.95 GPa, respectively, show that these aggregates possess excellent material properties.  相似文献   

11.
Studies of the stoichiometry and kinetics of the reaction between hydroxylamine and iodine, previously studied in media below pH 3, have been extended to pH 5.5. The stoichiometry over the pH range 3.4–5.5 is 2NH2OH + 2I2 = N2O + 4I? + H2O + 4H+. Since the reaction is first-order in [I2] + [I3?], the specific rate law, k0, is k0 = (k1 + k2/[H+]) {[NH3OH+]0/(1 + Kp[H+])} {1/(1 + KI[I?])}, where [NH3OH+]0 is total initial hydroxylamine concentration, and k1, k2, Kp, and KI are (6.5 ± 0.6) × 105 M?1 s?1, (5.0 ± 0.5) s?1, 1 × 106 M?1, and 725 M?1, respectively. A mechanism taking into account unprotonated hydroxylamine (NH2OH) and molecular iodine (I2) as reactive species, with intermediates NH2OI2?, HNO, NH2O, and I2?, is proposed.  相似文献   

12.
Oligomeric and protofibrillar aggregates formed by the amyloid‐β peptide (Aβ) are believed to be involved in the pathology of Alzheimer’s disease. Central to Alzheimer pathology is also the fact that the longer Aβ42 peptide is more prone to aggregation than the more prevalent Aβ40. Detailed structural studies of Aβ oligomers and protofibrils have been impeded by aggregate heterogeneity and instability. We previously engineered a variant of Aβ that forms stable protofibrils and here we use solid‐state NMR spectroscopy and molecular modeling to derive a structural model of these. NMR data are consistent with packing of residues 16 to 42 of Aβ protomers into hexameric barrel‐like oligomers within the protofibril. The core of the oligomers consists of all residues of the central and C‐terminal hydrophobic regions of Aβ, and hairpin loops extend from the core. The model accounts for why Aβ42 forms oligomers and protofibrils more easily than Aβ40.  相似文献   

13.
The use of fluorescently tagged amyloid peptides, implicated in Alzheimer's disease, to study their aggregation at low concentrations is a common method; however, the fluorescent tag should not introduce a bias in the aggregation process. In this work, native amyloid peptides Aβ(1–40) and Aβ(1–42) and fluorescein-5-isothiocyanate (FITC), tagged ones, were studied using Taylor dispersion analysis coupled with a simultaneous UV and light-emitting diode-induced fluorescence detection, to unravel the effect of FITC on the aggregation process. For that, a total concentration of 100 µM of peptides consisting of a mixture of native and tagged ones (up to 10% in moles) was applied. Results demonstrated that FITC had a strong inhibition effect upon the aggregation behaviour of Aβ(1–42), whereas for Aβ(1–40), only a retardation in kinetics was observed. It was also shown that when mixed solutions of Aβ(1–40) and Aβ(1–42) are used, the Aβ(1–42) alloform was the leading peptide in the aggregation process, and when the latter was tagged, the aggregation kinetics decreased but the lifetime of potentially toxic oligomers was drastically increased. These results confirmed that the hydrophilicity of the N-terminus part of the peptide plays a major role in the aggregation process.  相似文献   

14.
In the present work, a new electrochemical strategy for the sensitive and specific detection of soluble β‐amyloid Aβ(1–40/1–42) peptides in a rat model of Alzheimer’s disease (AD) is described. In contrast to previous antibody‐based methods, β‐amyloid(1–40/1–42) was quantified based on its binding to gelsolin, a secretory protein present in the cerebrospinal fluid (CSF) and plasma. The level of soluble β‐amyloid peptides in the CSF and various brain regions were found with this method to be lower in rats with AD than in normal rats.  相似文献   

15.
Oligomeric methyl silsesquioxane (O‐MSSQ) precursors were prepared from methyl trimethoxysilane (MTMS) in a mixed solvent of methyl isobutyl ketone and tetrahydrofuran by variations in the pH and molar ratio of water to MTMS (R1). The molecular structures of O‐MSSQ were controlled by the reaction conditions. At a fixed pH value, the percentage of the end group, Si? OCH3, decreased with increasing R1, but that of Si? OH increased. With the pH increasing, the ratio of Si? OCH3 groups to Si? OH groups was enhanced, but ratio of the molecular weights was reduced. The molecular weight distribution was progressively broader as the pH value decreased. These results were explained by the effects of R1 and pH on the hydrolysis and condensation reactions. The prepared O‐MSSQ precursors consisted of mixed cage and network structures. The ratio of cage structures to network structures increased at low pH and high R1 values. Highly uniform thin films were spin‐coated from the O‐MSSQ precursors, and this was followed by multistep curing. The content of cage structures in O‐MSSQ films decreased with increasing curing temperatures, whereas the network content in O‐MSSQ films showed the opposite trend. Such a structural transformation resulted in significant variations in the physical properties. Both the refractive index and dielectric constant decreased with higher cage/network ratios because of changes in the molar volume. The prepared O‐MSSQ has potential applications as a low dielectric constant material. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 1560–1571, 2002  相似文献   

16.
Chlorogenic acid and caffeic acid were selected as test samples for separation by the pH‐zone‐refining countercurrent chromatography (CCC). The separation of these test samples was performed with a two‐phase solvent system composed of methyl‐tert‐butyl‐ether/acetonitrile/water at a volume ratio of 4:1:5 v/v/v where trifluoroacetic acid (TFA; 8 mM) was added to the organic stationary phase as a retainer and NH4OH (10 mM) to the aqueous mobile phase as an eluter. Chlorogenic acid was successfully separated from Flaveria bidentis (L.) Kuntze (F. bidentis) and Lonicerae Flos by pH‐zone‐refining CCC, a slightly polar two‐phase solvent system composed of methyl‐tert‐butyl‐ether/acetonitrile/n‐butanol/water at a volume ratio of 4:1:1:5 v/v/v/v was selected where TFA (3 mM) was added to the organic stationary phase as a retainer and NH4OH (3 mM) to the aqueous mobile phase as an eluter. A 16.2 mg amount of chlorogenic acid with the purity of 92% from 1.4 g of F. bidentis, and 134 mg of chlorogenic acid at the purity of 99% from 1.3 g of crude extract of Lonicerae Flos have been obtained. These results suggest that pH‐zone‐refining CCC is suitable for the isolation of the chlorogenic acid from the crude extracts of F. bidentis and Lonicerae Flos.  相似文献   

17.
The folding and aggregation behavior of a pair of oligo(phenylene ethynylene) (OPE) foldamers are investigated by means of UV/Vis absorption and circular dichroism spectroscopy. With identical OPE backbones, two foldamers, 1 with alkyl side groups and 2 with triethylene glycol side chains, manifest similar helical conformations in solutions in n‐hexane and methanol, respectively. However, disparate and competing folding and aggregation processes are observed in alternative solvents. In cyclohexane, oligomer 1 initially adopts the helical conformation, but the self‐aggregation of unfolded chains, as a minor component, gradually drives the folding–unfolding transition eventually to the unfolded aggregate state completely. In contrast, in aqueous solution (CH3OH/H2O) both folded and unfolded oligomer 2 appear to undergo self‐association; aggregates of the folded chains are thermodynamically more stable. In solutions with a high H2O content, self‐aggregation among unfolded oligomers is kinetically favored; these oligomers very slowly transform into aggregates of helical structures with greater thermodynamic stability. The folded–unfolded conformational switch thus takes place with the free (nonaggregated) molecules, and the very slow folding transition is due to the low concentration of molecularly dispersed oligomers.  相似文献   

18.
In this article, an approach has been developed for the analysis of some small peptides with similar pI values by CE‐ESI‐MS based on the online concentration strategy of dynamic pH junction. The factors affected on the separation, detection and online enrichment, such as BGE, injection pressure, sheath flow liquid and separation voltage have been investigated in detail. Under the optimum conditions, i.e. using 0.5 mol/L formic acid (pH 2.15) as the BGE, preparing the sample in 50 mM ammonium acetate solution (pH 7.5), 50 mbar of injection pressure for 300 s, using 7.5 mM of acetic acid in methanol–water (80% v/v) solution as the sheath flow liquid and 20 kV as the separation voltage, four peptides with similar pI values, such as L ‐Ala‐L ‐Ala (pI=5.57), L ‐Leu‐D ‐Leu (pI=5.52), Gly‐D ‐Phe (pI=5.52) and Gly‐Gly‐L ‐Leu (pI=5.52) achieved baseline separation within 18.3 min with detection limits in the range of 0.2–2.0 nmol/L. RSDs of peak migration time and peak area were in the range of 1.45–3.57 and 4.93–6.32%, respectively. This method has been applied to the analysis of the four peptides in the spiked urine sample with satisfactory results.  相似文献   

19.
The title compound AuS2CNH2 was prepared from an aqueous solution by reaction of dicyanidoaurate [Au(CN)2] with excess of ammoniumdithiocarbamate NH4S2CN H 2 at pH ≈ 2. The compound crystallizes in the orthorhombic space group Cmma with a = 6.4597(2), b = 12.6556(3), and c = 5.3235(1) Å. The crystal structure comprises linear S–Au–S dumbbells forming unbranched zigzag chains in combination with the dithiocarbamate ligands. The three‐dimensional arrangement of the molecules is realized by aurophilic AuI–AuI and hydrogen bonding interactions, respectively. AuS2CNH2 presents orange luminescence due to a broad emission band between 12000 cm–1 and 23000 cm–1 (ν = 26316 cm–1).  相似文献   

20.
A molecularly imprinted polymer (MIP) was synthesized in order to specifically extract vinflunine, an anticancer agent, and its metabolite (4‐O‐deacetylvinflunine) from bovine plasma and artificial urine by solid‐phase extraction (SPE). Vinorelbine, a non‐fluorinated analogue of vinflunine, was selected as a template for MIP synthesis. The selectivity of MIP versus the template (vinorelbine) and other alkaloids (catharanthine, vinblastine, vincristine, vinflunine and 4‐O‐deacetylvinflunine) was shown by a SPE protocol carried out with non‐aqueous samples. A second protocol was developed for aqueous samples with two consecutive washing steps (AcOH–NH2OH buffer (pH 7, I=10 mM)–MeOH mixture 95:5 v/v and ACN–AcOH mixture 99:1 v/v) and an elution step (MeOH–AcOH mixture 90:10 v/v). Thus, MIP‐SPE of bovine plasma brought high recoveries, 81 and 89% for vinflunine and its metabolite, respectively. This protocol was slightly modified for artificial urine samples in order to obtain a good MIP/NIP selectivity; furthermore, elution recoveries were 73 and 81% for vinflunine and its metabolite, respectively. Repeatability was assessed in both biological matrices and RSD (%) were inferior to 4%. The MIP also showed a suitable linearity (r2 superior to 0.99), between 0.25 and 10 μg/mL for plasma, and between 1 and 5 μg/mL for artificial urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号