首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unbonded silicon oxynitride and silica high‐performance liquid chromatography stationary phases have been evaluated and compared for the separation of basic compounds of differing molecular weight, pKa, and log D using aqueous/organic mobile phases. The influences of percentage of organic modifier, buffer pH, and concentration in the mobile phase on base retention were investigated on unbonded silicon oxynitride and silica phases. The results confirmed that unbonded silicon oxynitride and silica phases demonstrated excellent separation performance for model basic compounds and both the unbonded phases examined possessed a hydrophobic/adsorption and ion‐exchange character. The silicon oxynitride stationary phase exhibited high hydrophilicity compared with silica with a reversed‐phase mobile phase. An ion‐exclusion‐type mechanism becomes predominant for the separation of three aimed bases on the silicon oxynitride column at pH 2.8. Different from silicon oxynitride stationary phase, no obvious change for the retention time of three model bases on silica stationary phase at pH 2.8 can be observed.  相似文献   

2.
Separation of the two enantiomers of racemic α‐ and β‐amino acids on two ligand exchange chiral stationary phases (CSPs) prepared previously by covalently bonding sodium N‐((S)‐1‐hydroxymethy‐3‐methylbutyl)‐N‐undecylaminoacetate or sodium N‐((R)‐2‐hydroxy‐1‐phenylethyl)‐N‐undecylaminoacetate on silica gel was studied with variation of the organic modifier (methanol) concentration in the aqueous mobile phase. In particular, the variation of retention factors with changing organic modifier concentration in the aqueous mobile phase was found to be strongly dependent on both the analyte lipophilicity and the stationary phase lipophilicity. In general, the retention factors of relatively lipophilic analytes on relatively lipophilic CSPs tend to increase with increasing organic modifier concentration in the aqueous mobile phases while those of less lipophilic or hydrophilic analytes tend to increase. However, only highly lipophilic analytes show decreasing retention factors with increasing organic modifier concentration in the aqueous mobile phase on less lipophilic CSPs. The contrasting retention behaviors on the two CSPs were rationalized by the balance of the two competing interactions, viz. hydrophilic interaction of analytes with polar aqueous mobile phase and the lipophilic interaction of analytes with the stationary phase.  相似文献   

3.
Retention of a model set of sulfonylurea compounds has been studied under RP‐LC conditions, considering competitional effects brought by different alcohols (ethanol, 1‐propanol, 2‐propanol, 1‐butanol, 1‐pentanol, and 1‐octanol) used as additives in the organic component of the mobile phase (methanol). The capacity factors determined for the model compounds decreased with the increase of the hydrophobic character of the organic additive in the mobile phase. The amount of the additive within the organic component of the mobile phase was kept constant (1% as volumetric ratio). Retention was studied at different mobile phase compositions (aqueous to organic component ratios). Different functional fitting models were used to correlate retention to the content of the organic component in the mobile phase. Extrapolation of retention expressed as capacity factor to a mobile phase composition free of organic component is well correlated to the hydrophobic characteristics of the organic additives. The adsorption model was used for tuning the experimental find‐outs. The possibility of controlling retention through the competitive effects induced by hydrophobic additives in the mobile phase is highlighted.  相似文献   

4.
A novel organic‐silica hybrid monolith was prepared through the binding of histidine onto the surface of monolithic matrix for mixed‐mode per aqueous and ion‐exchange capillary electrochromatography. The imidazolium and amino groups on the surface of the monolithic stationary phase were used to generate an anodic electro‐osmotic flow as well as to provide electrostatic interaction sites for the charged compounds at low pH. Typical per aqueous chromatographic behavior was observed in water‐rich mobile phases. Various polar and hydrophilic analytes were selected to evaluate the characteristics and chromatographic performance of the obtained monolith. Under per aqueous conditions, the mixed‐mode mechanism of hydrophobic and ion‐exchange interactions was observed and the resultant monolithic column proved to be very versatile for the efficient separations of these polar and hydrophilic compounds (including amides, nucleosides and nucleotide bases, benzoic acid derivatives, and amino acids) in highly aqueous mobile phases. The successful applications suggested that the histidine‐modified organic‐silica hybrid monolithic column could offer a wide range of retention behaviors and flexible selectivities toward polar and hydrophilic compounds.  相似文献   

5.
This work deals with the potentiality of nano liquid chromatography (Nano‐LC) for the chiral separation of racemic mixture of tryptophan and some selected derivatives by using 100 µm i.d. fused silica capillary packed with teicoplanin bonded to 5 µm diol silica stationary phase. The experiments were carried out by using a cheap and laboratory‐assembled nano‐LC–UV system. Elution was done in an isocratic mode using a polar organic mobile phase. In order to find the optimum chiral separation of the studied enantiomers, some chromatographic experimental parameters were systematically studied and optimized. Among them, mobile phase composition, namely organic modifier type and concentration, buffer type and pH and aqueous content and sample solvent dilution on retention time, retention factor and enantioresolution factor were studied. Baseline enantioresolution and good peak shape was achieved utilizing the mobile phase containing 40 mM ammonium formate at pH pH 2.5 in ACN/water/acetone (60:30:10, v/v/v) at 520 nL/min in less than 8 min analysis time.  相似文献   

6.
The lipophilicity (RM0) and specific hydrophobic surface area for the representatives of four generation cephalosporins have been determined by reversed‐phase thin‐layer chromatography, and the effect of different mobile‐phase modifiers (such as methanol, acetonitrile, acetone, 1,4‐dioxane and 2‐propanol) on the retention has been studied. The compounds studied showed typical retention behavior; their RM values decreased linearly with increasing concentration of the organic modifier in the eluent. The linear correlations between the volume fraction of the organic solvent and the RM values over a limited range were established for each solute, resulting in high values of correlation coefficients (>0.95 in most cases). RM values were determined by various concentrations of organic modifier, and the correlation obtained was extrapolated to 0% of organic modifier. Chromatographically established logP (RM0) parameters were compared with computationally calculated partition coefficients values (AClogP, ALOGP, KOWWIN, ALOGPs, XLOGP2, MLOGP and XLOGP3) and experimental octanol–water logP values (measured by the shake flask method). The received results demonstrate that RP‐TLC may be a good alternative technique for analytics in describing the lipophilic nature of investigated cephalosporins as well as the activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
The chromatographic retention mechanism describing relationship between retention factor and concentration of Cu2+(l ‐phenylalanine)2 using chiral ligand mobile phase was investigated and eight mandelic acid derivatives were enantioseparated by chiral ligand exchange chromatography. The relationship between retention factor and concentration of the Cu2+(l ‐phenylalanine)2 complex was proven to be in conformity with chromatographic retention mechanism in which chiral discrimination occurred both in mobile and stationary phase. Different copper(II) salts, chiral ligands, organic modifier, pH of aqueous phase, and conventional temperature on retention behavior were optimized. Eight racemates were successfully enantioseparated on a common reversed‐phase column with an optimized mobile phase composed of 6 mmol/L of l ‐phenylalanine or N,N‐dimethyl‐l ‐phenylalanine and 3 mmol/Lof copper(II) acetate or copper(II) sulfate aqueous solution and methanol.  相似文献   

8.
The chromatographic behavior of model compounds of biomedical significance (organic acids, amino acids, drugs) was investigated using mobile phases modified with tyloxapol. The influence of factors such as concentration of tyloxapol, content of organic modifier and pH of mobile phase on the retention factor of solutes was studied. The results were compared with the data obtained by elution with mobile phases containing Triton X‐100 additives, since units of Triton X‐100 are repeated in the structure of tyloxapol. Divergence in chromatographic behavior of model compounds was explained by the difference in physico‐chemical characteristics (microviscosity, polarity, critical micelle concentration, shape of micelles, etc.) of tyloxapol and Triton X‐100 micelles. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Anionic species with ion pair forming ability are commonly used to enhance the retention and efficiency of basic analytes in RPLC separations. However, little is known about the interactions between organic mobile phase modifiers and such ion pairing anions. In this work, we measured the magnitude of the retention increase of basic drugs and peptides upon addition of strong inorganic ion pairing anions (e.g. perchlorate) as a function of the volume fraction of modifier in acidic water-acetonitrile mobile phases on two different stationary phases. We found that the increase in retention upon addition of various salts depended strongly on the eluent strength. In general, larger retention increases upon addition of the anion were observed at higher organic fractions. Regression of retention against the volume fraction of organic modifier indicated that the ion pair forming anions substantially decreased S values while only slightly changing ln k'w values. The decrease in S is the major cause of the retention increase of basic drugs and peptides when such anions are added to the mobile phase.  相似文献   

10.
11.
Two kinds of retention models describing a behaviour of ionogenic substances in reversed-phase chromatographic systems were compared. Model A utilises a concept of limiting retention factors and is especially suitable for the prediction of retention of compounds co-existing in several forms in mobile phase. An effect of the concentration of organic modifier (e.g., methanol) on the magnitudes of the limiting retention factors and equilibrium constants (dissociation constants of the separated substances) can be expressed with the aid of various, more or less sophisticated, relationships. A stoichiometric displacement model (model B) in its original form simply relates the analyte retention to the content of organic modifier in the mobile phase. In this work, it was modified to also express an effect of the mobile phase pH introducing side equilibria (acid-base) into the model. Both models predict a sigmoidal dependence of the analyte retention factor on the mobile phase pH in accordance with experimental data, and allow, among others, to estimate dissociation constants from those data. Experimental dependencies between the analyte retention and the concentration of methanol in the mobile phase comply well with model A, whereas the stoichiometric displacement model could be used only in a limited range of the methanol concentrations.  相似文献   

12.
13.
Summary The retention behaviour of a series of benzimidazole derivatives has been studied as a function of the water content of aqueous methanol and aqueous acetonitrile eluents. The relationship between the retention constant (log k) and the pH of the aqueous phase was linear, with slope values depending on the composition of the aqueous phase, the molecular structure of the compound, and the type of C-18 bonded stationary phase. The type of organic modifier significantly affected the shape of the relationship between log k and the volume fraction of organic modifier in the mobile phase.  相似文献   

14.
A new kind of monolithic capillary electrochromatography column with poly(styrene‐co‐divinylbenzene‐co‐methacrylic acid) as the stationary phase has been developed. The stationary phase was found to be porous by scanning electron microscopy and the composition of the continuous bed was proved by IR spectroscopy to be the ternary polymer of styrene, divinylbenzene, and methacrylic acid. The effects of operating parameters, such as voltage, electrolyte, and organic modifier concentration in the mobile phase on electroosmotic flow were studied systematically. The retention mechanism of neutral solutes on such a column proved to be similar to that of reversed‐phase high performance liquid chromatography. In addition, fast analyses of phenols, chlorobenzenes, anilines, isomeric compounds of phenylenediamine and alkylbenzenes within 4.5 min were achieved.  相似文献   

15.
Hydrophilic interaction chromatography has been applied for the separation of epirubicin and its analogues using high-purity silica column with aqueous-organic mobile phase. Parameters affecting the chromatographic behavior of the solutes such as organic modifier, buffer pH, ionic strength and sample size, have been investigated. Of utmost importance for successful separation of these analogues is the choice of organic modifier, since it impacts both the solvent selectivity and the ionization of silica silanols as well as buffer solution, and consequently the retention behavior of solutes. Acetonitrile was shown to offer superior separation of these analogues to methanol, isopropanol or tetrahydrofuran. Results of the effects of organic modifier, buffer pH and ion strength indicate that the retention mechanism is a mixed-mode of adsorption and ion exchange. In addition, an irreversible adsorption of these compounds was found on silica in the weakly acidic or neutral mobile phases, and the effect of various factors on irreversible adsorption was also preliminarily discussed. More significantly, these basic compounds have exhibited peaks with a slanted front and a sharp tail, a typical overloading peak profile belonging to the behavior of competitive anti-Langmuir isotherm by increasing the sample size at the experimental conditions.  相似文献   

16.
对硅胶电色谱柱的性能进行了考察,发现在水/有机溶剂流动相条件下,几乎不存在气泡问题,流动相的组成在有机溶剂浓度、电解质浓度、PH值等方面可以在较大范围变化,选用5种典型样品,对硅胶电色谱的分离机理进行了系统研究,发现有反相分离机理、正相吸附机理、离子交换机理以及电泳机理参与作用。同时考察了有机溶剂浓度、电解质浓度、PH等对分离的影响。此外,还首次提出了一种全新的电色谱模式-动态改性硅胶电色谱。  相似文献   

17.
The measurement of pH in chromatographic mobile phases has been a constant subject of discussion during many years. The pH of the mobile phase is an important parameter that determines the chromatographic retention of many analytes with acid-base properties. In many instances a proper pH measurement is needed to assure the accuracy of retention-pH relationships or the reproducibility of chromatographic procedures. Three different methods are common in pH measurement of mobile phases: measurement of pH in the aqueous buffer before addition of the organic modifier, measurement of pH in the mobile phase prepared by mixing aqueous buffer and organic modifier after pH calibration with standard solutions prepared in the same mobile phase solvent, and measurement of pH in the mobile phase prepared by mixing aqueous buffer and organic modifier after pH calibration with aqueous standard solutions. This review discusses the different pH measurement and calibration procedures in terms of the theoretical and operational definitions of the different pH scales that can be applied to water-organic solvent mixtures. The advantages and disadvantages of each procedure are also presented through chromatographic examples. Finally, practical recommendations to select the most appropriate pH measurement procedure for particular chromatographic problems are given.  相似文献   

18.
Several mobile phase additives (i.e., organic acids and their ammonium salts) were used to modulate the chromatographic retention of cyanocobalamin and its cis‐diaminemonochloroplatinum(II) conjugate, depending on the specific nature of the stationary phase. Regardless of the mobile phase additive, the positively charged cyanocobalamin‐cis‐diaminemonochloroplatinum(II) conjugate was systematically less retained than cyanocobalamin on a conventional octadecyl‐silica column. In contrast, the amide‐embedded C18 column exhibited a progressive increase in the conjugate retention time upon changing the mobile phase additive from organic (acetic, formic and trifluoroacetic) acids to ammonium salts, ultimately leading to an inversion of the elution order. This change of retention was interpreted by invoking the interplay between hydrophobic interactions, hydrogen bonding between the conjugate and the polar amide groups and the ion‐pairing ability of the lyophilic counterions, whereby the acetate anion was found to be the most suitable to control the solute retention.  相似文献   

19.
In this work, we aimed to prepare a monolithic capillary column that allowed an isocratic separation of ten dopamine precursors and metabolites in a single run. Segments of five zwitterion sulfobetaine polymer monoliths have been modified by zwitterion phoshorylcholine by using an ultraviolet‐initiated two‐step photografting. Columns with 0, 33, 50, 66, and 100% of modified length were prepared. Effect of length of the modified segment and mobile phase composition has been tested. All columns provided dual‐retention mechanism with reversed‐phase retention in highly aqueous mobile phase and hydrophilic interaction mechanism in highly organic mobile phase. The retention mechanism was controlled by the composition of the mobile phase and has been described by a three‐parameter model. We have used regression parameters to characterize the retention of analyzed compounds and to study individual pathways of dopamine metabolism. Comprehensive optimization of mobile phase composition allowed to find an optimal composition of the mobile phase and stationary phase surface chemistry arrangement to achieve desired separation. Optimized columns provided an isocratic separation of all tested compounds in less than nine min.  相似文献   

20.
A new calix[4]crown-5 macrocycle-bonded silica stationary phase (CL-CIMS) was prepared and applied at the same time to develop a chromatographic procedure to separate aromatic amines, phenols and drugs in this study. The chromatographic behaviors of the prepared stationary phase for these analytes were studied and compared with those of ODS (octadecylsilane). The effect of organic modifier content and pH of the mobile phase on retention and selectivity of these compounds were investigated. Some aromatic amines, phenols or drugs on CL-CIMS were successfully separated. The results show that CL-CIMS exhibits high selectivities for the above analytes in high aqueous mobile phases and a bright prospect in routine, fast separation of aromatic amines, phenols and drug compounds. From chromatographic data, it can be concluded that hydrophobic interaction is mainly responsible for the retention behavior as well as hydrogen-bonding interaction, π-π and dipole-dipole interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号