首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The overall kinetic performance of three production columns (2.1 mm × 100 mm format) packed with 1.6 μm superficially porous CORTECS‐C18+ particles was assessed on a low‐dispersive I‐class ACQUITY instrument. The values of their minimum intrinsic reduced plate heights (hmin = 1.42, 1.57, and 1.75) were measured at room temperature (295 K) for a small molecule (naphthalene) with an acetonitrile/water eluent mixture (75:25, v/v). These narrow‐bore columns provide an average intrinsic efficiency of 395 000 plates per meter. The gradient separation of 14 small molecules shows that these columns have a peak capacity about 25% larger than similar ones packed with fully porous BEH‐C18 particles (1.7 μm) or shorter (50 mm) columns packed with smaller core–shell particles (1.3 μm) operated under very high pressure (>1000 bar) for steep gradient elution (analysis time 80 s). In contrast, because their permeabilities are lower than those of columns packed with larger core–shell particles, their peak capacities are 25% smaller than those of narrow‐bore columns packed with standard 2.7 μm core–shell particles.  相似文献   

2.
Measurement of whole blood sirolimus and everolimus is required in order to optimize patient treatment following solid organ transplant. Assay by LC‐MS/MS is increasingly preferred; however efficient use of the instrument and short turnaround times are crucial. Use of a 1.6 µm solid‐core packing HPLC column (Cortecs) gave significant increases in efficiency, sensitivity and throughput compared with an existing method, following simple protein precipitation of small‐volume (20 μL) whole blood samples. Sirolimus, everolimus and the stable isotopic internal standard (13C2D4 – everolimus) eluted at around 0.8 min, and total analytical run time was 2.2 min, saving almost 4 min per sample compared with an existing method. Within‐assay imprecision (CV) was 3.3–8.5%, and between‐assay imprecision was 2.2–10.8%. Retrospective assay of external quality assurance samples and comparison of patient samples assayed in parallel showed only small differences (between +6.8 and ?1.9%) in results using the Cortecs column when compared with the existing method. No significant interferences or ion suppression were observed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
A stationary phase bearing both bridged bis‐ureido and free amino groups (USP‐HILIC‐NH2–2.5SP) for high‐speed hydrophilic interaction liquid chromatography separations was prepared using a one‐pot two‐step procedure starting from 2.5 μm totally porous silica particles. Highly polar compounds, such as polyols, hydroxybenzoic acids, and sugars, were successfully analyzed in shorter times and with higher peak efficiency, when compared to results obtained with a bidentate urea‐type column packed with 5 μm particles. Increased sugarophilicity and better peak shape were attested for the USP‐HILIC‐NH2–2.5SP column (100 × 3.2 mm id) when compared with two commercially available UHPLC columns, namely an acquity BEH amide packed with totally porous 1.7 μm microparticles and a HILIC Kinetex column packed with core–shell 2.6 μm particles. Finally, the new column was employed in the separation of complex mixture of sugars (mono‐, di‐, and oligosaccharides) and in the analysis of beer samples. The resulting chromatograms showed good selectivity and overall resolution, while the catalyzing effect of the free amino moieties resulted in excellent peak shapes and in the absence of split peaks due to sugar anomerization phenomena.  相似文献   

4.
In the last decade, core–shell particles have gained more and more attention in fast liquid chromatography separations due to their comparable performance with fully porous sub‐2 μm particles and their significantly lower back pressure. Core–shell particles are made of a solid core surrounded by a shell of classic fully porous material. To embrace the developed core–shell column market and use these columns in pharmaceutical analytical applications, 17 core–shell C18 columns purchased from various vendors with various dimensions (50 mm × 2.1 mm to 100 mm × 3 mm) and particle sizes (1.6–2.7 μm) were characterized using Tanaka test protocols. Furthermore, four selected active pharmaceutical ingredients were chosen as test probes to investigate the batch to batch reproducibility for core–shell columns of particle size 2.6–2.7 μm, with dimension of 100 × 3 mm and columns of particle size 1.6 μm, with dimension 100 × 2.1 mm under isocratic elution. Columns of particle size 2.6–2.7 μm were also tested under gradient elution conditions. To confirm the claimed comparable efficiency of 2.6 μm core–shell particles as sub‐2 μm fully porous particles, column performances of the selected core–shell columns were compared with BEH C18, 1.7 μm, a fully porous column material as well.  相似文献   

5.
New generation columns, i.e. packed with superficially porous silica particles are available as trade names with following manufacturers: Halo, Ascentis Express, Proshell 120, Kinetex, Accucore, Sunshell, and Nucleoshell. These provide ultra‐fast HPLC separations for a variety of compounds with moderate sample loading capacity and low back pressure. Chemistries of these columns are C8, C18, RP‐Amide, hydrophilic interaction liquid chromatography, penta fluorophenyl (PFP), F5, and RP‐aqua. Normally, the silica gel particles are of 2.7 and 1.7 μm as total and inner solid core diameters, respectively, with 0.5‐μm‐thick of outer porous layer having 90 Å pore sizes and 150 m2/g surface area. This article describes these new generation columns with special emphasis on their textures and chemistries, separations, optimization, and comparison (inter and intra stationary phases). Besides, future perspectives have also been discussed.  相似文献   

6.
The unique features of high porosity, shape selectivity, and multiple active sites make metal–organic frameworks (MOFs) promising as novel stationary phases for high‐performance liquid chromatography (HPLC). However, the wide particle size distribution and irregular shape of conventional MOFs lead to lower column efficiency of such MOF‐packed columns. Herein, the fabrication of monodisperse MOF@SiO2 core–shell microspheres as the stationary phase for HPLC to overcome the above‐mentioned problems is reported. Zeolitic imidazolate framework 8 (ZIF‐8) was used as an example of MOFs due to its permanent porosity, uniform pore size, and exceptional chemical stability. Unique carboxyl‐modified silica spheres were used as the support to grow the ZIF‐8 shell. The fabricated monodisperse ZIF‐8@SiO2 packed columns (5 cm long × 4.6 mm i.d.) show high column efficiency (23 000 plates m?1 for bisphenol A) for the HPLC separation of endocrine‐disrupting chemicals (bisphenol A, β‐estradiol, and p‐(tert‐octyl)phenol) and pesticides (thiamethoxam, hexaflumuron, chlorantraniliprole, and pymetrozine) within 7 min with good relative standard deviations for 11 replicate separations of the analytes (0.01–0.39, 0.65–1.7, 0.70–1.3, and 0.17–0.91 % for retention time, peak area, peak height, and half peak width, respectively). The ZIF‐8@SiO2 microspheres combine the advantages of the good column packing properties of the uniform monodisperse silica microspheres and the separation ability of the ZIF‐8 crystals.  相似文献   

7.
Sol‐gel bonded packing materials in continuous‐bed columns have been prepared for capillary electrochromatography (CEC). Three packing materials were investigated: small‐pore Spherisorb ODS1 (3 μm, 80 Å) with octadecyl as stationary phase, small‐pore mixed‐mode Spherisorb ODS/SCX (3 μm, 80 Å) with octadecyl and propyl sulfonic acid as stationary phases, and large‐pore Nucleosil ODS (7 μm, 1 400 Å) with octadecyl as stationary phase. The characteristics of these columns were compared in terms of electroosmotic flow, efficiency, inertness, and retention factors. In contrast to columns containing sol‐gel bonded ODS, columns containing sol‐gel bonded mixed‐mode ODS/SCX generated nearly pH independent electroosmotic flow (EOF) over pH 2–9. Columns containing sol‐gel bonded large‐pore ODS produced nearly three times lower reduced plate height than those containing small‐pore ODS. Efficiencies of 220,000 plates per meter and 175,000 plates per meter were obtained from columns containing sol‐gel bonded 7 μm, 1 400 Å ODS and columns containing sol‐gel bonded 3 μm, 80 Å ODS, respectively, which are among the highest reported efficiencies for continuous‐bed columns. In CEC, over one million plates per meter and pH independent EOF are expected from continuous‐bed columns containing sol‐gel bonded 1.5 μm particles with large pores and mixed‐mode stationary phases.  相似文献   

8.
A rapid, sensitive, and reliable ultra‐performance liquid chromatography (UPLC) coupled with photodiode array detection method was developed for the amino acid analysis of Amur sturgeon (Acipenser schrenckii Brandt). The method uses minimal sample volume and automated online precolumn derivitization of amino acids with fluorescent 6‐aminoquinolyl‐carbamyl reagent. The chromatographic separation was achieved by UPLC, which used a column with 1.7 μm particle packing that enabled higher speed of analysis, peak capacity, greater resolution, and increased sensitivity. Amino acid derivatives obtained under optimal conditions were separated on a Waters UPLC BEH C18 column with Acetonitrile–acetate buffer as mobile phase. Matrix effects were investigated and good linearities with correlation coefficients better than 0.9949 were obtained over a wide range of 5–1000 μmol/L for all amino acids. The simple sample preparation and minimal sample volume make the method useful for the quantitation of 17 amino acids in Amur sturgeon samples. It is concluded that a rapid and robust platform based on UPLC was established, and a total of 17 amino acids of Amur sturgeon were tentatively detected. This method showed good accuracy and repeatability that can be used for the quantification of amino acids in real samples.  相似文献   

9.
Anacetrapib is a potent and selective CETP inhibitor and is undergoing phase III clinical trials for the treatment of dyslipidemia. A simple and sensitive high‐performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method for the quantification of anacetrapib in rat plasma was developed and validated using an easily purchasable compound, chlorpropamide, as an internal standard (IS). A minimal volume of rat plasma sample (20 μL) was prepared by a single‐step deproteinization procedure with 80 μL of acetonitrile. Chromatographic separation was performed using Kinetex C18 column with a gradient mobile phase consisting of water and acetonitrile containing 0.1% formic acid at a flow rate of 0.3 mL/min. Mass spectrometric detection was performed using selected reaction monitoring modes at the mass/charge transitions m/z 638 → 283 for anacetrapib and m/z 277 → 175 for IS. The assay was validated to demonstrate the selectivity, linearity, precision, accuracy, recovery, matrix effect and stability. The lower limit of quantification was 5 ng/mL. This LC‐MS/MS assay was successfully applied in the rat plasma protein binding and pharmacokinetic studies of anacetrapib. The fraction of unbound anacetrapib was determined to be low (ranging from 5.66 to 12.3%), and the absolute oral bioavailability of anacetrapib was 32.7%.  相似文献   

10.
Ground porous silica monolith particles with an average particle size of 2.34 μm and large pores (363 Å) exhibiting excellent chromatographic performance have been synthesized on a relatively large scale by a sophisticated sol–gel procedure. The particle size distribution was rather broad, and the d(0.1)/d(0.9) ratio was 0.14. The resultant silica monolith particles were chemically modified with chlorodimethyloctadecylsilane and end‐capped with a mixture of hexamethyldisilazane and chlorotrimethylsilane. Very good separation efficiency (185 000/m) and chromatographic resolution were achieved when the C18‐bound phase was evaluated for a test mixture of five benzene derivatives after packing in a stainless‐steel column (1.0 mm × 150 mm). The optimized elution conditions were found to be 70:30 v/v acetonitrile/water with 0.1% trifluoroacetic acid at a flow rate of 25 μL/min. The column was also evaluated for fast analysis at a flow rate of 100 μL/min, and all the five analytes were eluted within 3.5 min with reasonable efficiency (ca. 60 000/m) and resolution. The strategy of using particles with reduced particle size and large pores (363 Å) combined with C18 modification in addition to partial‐monolithic architecture has resulted in a useful stationary phase (C18‐bound silica monolith particles) of low production cost showing excellent chromatographic performance.  相似文献   

11.
Commercial C(18) columns packed with superficially porous particles of different sizes and shell thicknesses (Ascentis Express, Kinetex, and Poroshell 120) or sub-2-μm totally porous particles (Acquity BEH) were systematically compared using a small molecule mixture and a complex natural product mixture as text probes. Significant efficiency loss was observed on 2.1-mm id columns even with a low dispersion ultra-high pressure liquid chromatography system. The Kinetex 4.6-mm id column packed with 2.6-μm particles exhibited the best overall efficiency for small molecule separations and the Poroshell 120 column showed better performance for mid-size natural product analytes. The Kinetex 2.1-mm id column packed with 1.7-μm particles did not deliver the expected performance and the possible reasons besides extra column effect have been proved to be frictional heating effect and poor column packing quality. Different column retentivities and selectivities have been observed on the four C(18) columns of different brands for the natural product separation. Column batch-to-batch variability that has been previously observed on the Ascentis Express column was also observed on the Kinetex and Poroshell 120 column.  相似文献   

12.
The behavior of 15 benzimidazoles, including their main metabolites, using several C18 columns with standard or narrow‐bore diameters and different particle size and type were evaluated. These commercial columns were selected because their differences could affect separation of benzimidazoles, and so they can be used as alternative columns. A simple screening method for the analysis of benzimidazole residues and their main metabolites was developed. First, the separation of benzimidazoles was optimized using a Kinetex C18 column; later, analytical performances of other columns using the above optimized conditions were compared and then individually re‐optimized. Critical pairs resolution, analysis run time, column type and characteristics, and selectivity were considered for chromatographic columns comparison. Kinetex XB was selected because it provides the shortest analysis time and the best resolution of critical pairs. Using this column, the separation conditions were re‐optimized using a factorial design. Separations obtained with the different columns tested can be applied to the analysis of specific benzimidazoles residues or other applications.  相似文献   

13.
Superficially porous silica particles columns (SPSPCs) are manufactured by different companies. The most common have the brand names Halo, Ascentis Express and Kinetex. These columns provide super fast, sharp peaks and moderate sample loading and back pressure. These are available in different chemistries such as C?, C??, RP Amide and Hilic. Normally, the silica gel particles have 2.7 and 1.7 μm total and inner solid core diameters with 0.5 μm thick outer porous layer, 90?? pore size and 150?m2/g surface area. They have been used for the separation and identification of low and high molecular weight compounds. The present article describes the state of the art of superficially porous silica particles based columns with special emphasis on their structures, mechanisms of separation, applications and comparison.  相似文献   

14.
Liquid chromatography coupled to high‐resolution mass spectrometry is the technique of choice for the untargeted profiling of food matrices. Despite the high potential of high‐resolution mass spectrometry, when dealing with complex mixtures, an efficient separation technique is also needed. The novel core‐shell chromatographic columns packed with sub‐2 μm sized particles are claimed to show very good resolution. However, the analytes retention can be significantly altered when working under ultra‐high performance chromatographic conditions. In this work, an evaluation of four chromatographic systems, with either a single or two in‐series Kinetex™ C18 columns, either packed with 2.6 or 1.7 μm particles, is presented for the targeted analysis of a standard mixture and the untargeted analysis of a strawberry extract. An ultra‐high performance chromatographic system coupled via an electrospray source to a hybrid quadrupole‐Orbitrap mass spectrometer was used. From the extensive comparison, a surprising result was obtained, namely, that the system identifying the largest number of features was the one with two in‐series connected columns with the larger particle size. The inconsistency among the theoretical assumptions and the applicative findings points out the importance of an extensive chromatographic evaluation for the comprehensive untargeted profiling of complex real samples.  相似文献   

15.
We have developed an analytical method for the determination of lincomycin, tylosin A and tylosin B residues in royal jelly using liquid chromatography–triple quadrupole tandem mass spectrometry analysis. For extraction and purification, we employed 1% trifluoroacetic acid and 0.1 m Na2EDTA solutions along with an Oasis HLB cartridge. The target antibiotics were well separated in a Kinetex EVO C18 reversed‐phase analytical column using a combination of 0.1% formate acid in ultrapure water (A) and acetonitrile (B) as the mobile phase. Good linearity was achieved over the tested concentration range (5–50 μg/kg) in matrix‐matched standard calibration. The coefficients of determination (R2) were 0.9933, 0.9933 and 0.996, for tylosin A, tylosin B and lincomycin, respectively. Fortified royal jelly spiked with three different concentrations of the tested antibiotics (5, 10 and 20 μg/kg) yielded recoveries in the range 80.94–109.26% with relative standard deviations ≤4%. The proposed method was applied to monitor 11 brand of royal jelly collected from domestic markets and an imported brand from New Zealand; all the samples tested negative for lincomycin, tylosin A and tylosin B residues. In conclusion, 1% trifluoroacetic acid and 0.1 m Na2EDTA aqueous solvents combined with solid‐phase extraction could effectively complete the sample preparation process for royal jelly before analysis. The developed approach can be applied for a routine analysis of lincomycin, tylosin A and tylosin B residues in royal jelly.  相似文献   

16.
This report details the preparation of anastrozole (ATZ) reservoir‐type intravaginal ring (IVR) and the detection of the concentration of ATZ in beagle dog plasma by liquid chromatography–tandem mass spectrometry (LC–MS/MS). An ATZ reservoir‐type IVR which included ATZ silicone elastomer core and a nonactive silicone layer was manufactured by reaction injection moulding at 80°C for 20 min. An in vitro release experiment was performed under sink conditions and the samples were determined by high‐performance liquid chromatography. A bioanalytical method was developed and validated for determination of ATZ in beagle dog plasma for IVR development. The analytical method consisted of the extraction of plasma samples and determination of ATZ by LC–MS/MS using buspirone as the internal standard. Separation was achieved on a Kinetex‐C18 110A column (3 × 30 mm, 2.6 μm, Phenomenex) using step‐gradient mobile phase and an isocratic flow rate consisting of formic acid. Protonated ions formed by a turboion spray in the positive mode was used to detect the analyte (ATZ) and internal standard. The MS–MS detection was performed on a triple quadrupole mass spectrometer equipped with electrospray ionization source. The mass spectrometer was operated in the multiple reaction monitoring mode. The mass transition ion‐pair was followed as m/z from 294.10 to 225.08 for anastrozole and m/z from 386.23 to 122.11 for buspirone. The results proved that the correlation between in vitro and in vivo analyses was relatively good.  相似文献   

17.
The parameters that affect the shape of the band profiles of acido‐basic compounds under moderately overloaded conditions (sample size less than 500 nmol for a conventional column) in RPLC are discussed. Only analytes that have a single pKa are considered. In the buffer mobile phase used for their elution, their dissociation may, under certain conditions, cause a significant pH perturbation during the passage of the band. Two consecutive injections (3.3 and 10 μL) of each one of three sample solutions (0.5, 5, and 50 mM) of ten compounds were injected on five C18‐bonded packing materials, including the 5 μm Xterra‐C18 (121 Å), 5 μm Gemini‐C18 (110 Å), 5 μm Luna‐C18(2) (93 Å), 3.5 μm Extend‐C18 (80 Å), and 2.7 μm Halo‐C18 (90 Å). The mobile phase was an aqueous solution of methanol buffered at a constant WWpH of 6, with a phosphate buffer. The total concentration of the phosphate groups was constant at 50 mM. The methanol concentration was adjusted to keep all the retention factors between 1 and 10. The compounds injected were phenol, caffeine, 3‐phenyl 1‐propanol, 2‐phenyl butyric acid, amphetamine, aniline, benzylamine, p‐toluidine, procainamidium chloride, and propranololium chloride. Depending on the relative values of the analyte pKa and the buffer solution pH, these analytes elute as the neutral, the cationic, or the anionic species. The influence of structural parameters such as the charge, the size, and the hydrophobicity of the analytes on the shape of its overloaded band profile is discussed. Simple but general rules predict these shapes. An original adsorption model is proposed that accounts for the unusual peak shapes observed when the analyte is partially dissociated in the buffer solution during its elution.  相似文献   

18.
Three mixed‐mode high‐performance liquid chromatography columns packed with superficially porous carbon/nanodiamond/amine‐polymer particles were used to separate mixtures of cannabinoids. Columns evaluated included: (i) reversed phase (C18), weak anion exchange, 4.6 × 33 mm, 3.6 μm, and 4.6 × 100 mm, 3.6 μm, (ii) reversed phase, strong anion exchange (quaternary amine), 4.6×33 mm, 3.6 μm, and (iii) hydrophilic interaction liquid chromatography, 4.6 × 150 mm, 3.6 μm. Different selectivities were achieved under various mobile phase and stationary phase conditions. Efficiencies and peak capacities were as high as 54 000 N/m and 56, respectively. The reversed phase mixed‐mode column (C18) retained tetrahydrocannabinolic acid strongly under acidic conditions and weakly under basic conditions. Tetrahydrocannabinolic acid was retained strongly on the reversed phase, strong anion exchange mixed‐mode column under basic polar organic mobile phase conditions. The hydrophilic interaction liquid chromatography column retained polar cannabinoids better than the (more) neutral ones under basic conditions. A longer reversed phase (C18) mixed‐mode column (4.6 × 100 mm) showed better resolution for analytes (and a contaminant) than a shorter column. Fast separations were achieved in less than 5 min and sometimes 2 min. A real world sample (bubble hash extract) was also analyzed by gradient elution.  相似文献   

19.
A poly(butyl methacrylate‐co‐ethylene dimethacrylate) monolithic column was fabricated and used as a novel sorbent for online solid‐phase extraction coupled to liquid chromatography with tandem mass spectrometry for the simultaneous determination of Sudan I–IV in chili pepper powder. The prepared columns were characterized by scanning electron microscopy, nitrogen adsorption‐desorption, and pressure drop measurements. Online solid‐phase extraction was performed on the synthesized monolithic column using 10 mM ammonium acetate solution as the loading solution with the aid of an online cleanup chromatography system. The desorption of Sudan I–IV was achieved with acetonitrile as the eluting solution at the flow rate of 0.5 mL/min. The extracted analytes were subsequently eluted into a C18 analytical column for chromatographic separation using a mixture of 10% acetonitrile/90% formic acid (0.5%) solution as the mobile phase. Under the optimized conditions, the developed method had linear range of 1.0–50 μg/kg, a detection limit of 0.3 μg/kg, and a quantification limit of 1.0 μg/kg for each analyte. The intraday and interday recoveries of Sudan I–IV in chili pepper powder samples ranged from 94.8 to 100.9% and 94.9 to 99.4%, respectively. The intraday and interday precision were between 3.37–7.01% and 5.01–7.68%, respectively.  相似文献   

20.
The aim of this study was to develop an analytical method to determine mequitazine in rat plasma and urine. Mequitazine was separated by UPLC–MS/MS equipped with a Kinetex core–shell C18 column (50 × 2.1 mm, 1.7 μm) using 0.1% (v/v) aqueous formic acid and acetonitrile containing 0.1% (v/v) formic acid as a mobile phase by gradient elution at a flow rate of 0.3 mL/min. Quantitation of this analysis was performed on a triple quadrupole mass spectrometer employing electrospray ionization technique operating in multiple reaction monitoring positive ion mode. Mass transitions were m/z 323.3 → 83.1 for mequitazine and 281.3 → 86.3 for imipramine as internal standard. Liquid–liquid extraction with ethyl acetate and protein precipitation with methanol were used for sample extraction. Chromatograms showed that the method had high resolution, sensitivity and selectivity without interference from plasma constituents. Calibration curves for mequitazine in rat plasma and urine were 0.02–200 ng/mL, showing excellent linearity with correlation coefficients (r2) >0.99. Both intra‐ and inter‐day precisions (CV%) were within 4.08% for rat plasma and urine. The accuracies were 99.58–102.03%. The developed analytical method satisfied the criteria of international guidance. It could be successfully applied to pharmacokinetic studies of mequitazine after oral and intravenous administration to rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号