首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The rate constant of alkaline fading of fuchsin acid (FA2?) was measured in the presence of nonionic (TX‐100), cationic (dodecltrimethylammonium bromide, DTAB), and anionic (sodium dodecyl sulfate, SDS) surfactants. FA2? has three negatively charged substituents and one positive charge, and this makes the behavior of FA2– different from dyes such as bromophenol blue. It was observed that the reaction rate constant decreased in the presence of TX‐100, DTAB, and SDS. Binding constants of FA2? to TX‐100, DTAB, and SDS and the related thermodynamic parameters were calculated by the stoichiometric (classical) model. The results show that the binding of FA2? to SDS is endothermic in both regions, and the binding of FA2? to DTAB and TX‐100 is exothermic in one region and endothermic in another region of the used concentration range of these surfactants. Also, the binding constants of FA2? to surfactant molecules of SDS/TX‐100 and DTAB/TX‐100 mixed micelles were obtained.  相似文献   

2.
The rate constant of alkaline fading of malachite green (MG+) was studied in alcohol–water binary mixtures. This reaction was studied under pseudo‐first‐order conditions at 283–303 K. It was observed that the reaction rate constants were increased in the presence of different weight percentages of methanol, ethanol, 1‐propanol, 2‐propanol, ethylene glycol, 1,2‐propanediol, and glycerol (up to 19.3%). In aqueous glycerol solutions higher than 19.3%, the rate constant of reaction slightly decreases, which is due to high viscosity values of solvent mixtures. The fundamental rate constants of MG+ fading in these solutions were obtained by using the SESMORTAC model. Owing to the charged character of activated complex, with an increase in the weight percentage of the used cosolvents or temperature, k2 values change according to the trend of hydroxide ion nucleophilic parameter values. Also, using MG+ solvatochromism, a simple test, called MAGUS, is introduced for measuring the glycerol concentration in its aqueous solutions. © 2010 Wiley Periodicals, Inc. Int J Chem Kinet 42: 508–518, 2010  相似文献   

3.
The rate constant of malachite green (MG+) alkaline fading was measured in water‐ethanol‐1‐propanol ternary mixtures. This reaction was studied under pseudo‐first‐order conditions at 283‐303 K. It was observed that the reaction rate constant increases in the presence of different weight percentages of ethanol and 1‐propanol. The fundamental rate constants of MG+ fading in these solutions were obtained by SESMORTAC model. In each series of experiments, concentration of one alcohol was kept constant and the concentration of the second one was changed. It was observed that at constant concentration of one alcohol and variable concentrations of the second one, with increase in temperature, k1 values increase and this indicates that presence of ethanol (or 1‐propanol) increases dissolution of 1‐propanol (or ethanol) in the activated complex formed in these solutions. Also, in each zone, fundamental rate constants of reaction at each certain temperature change as k2 » k1 » k?1.  相似文献   

4.
The rate constant of malachite green (MG+) alkaline fading was measured in water–ethanol–2‐propanol ternary mixtures. This reaction was studied under pseudo‐first‐order conditions at 283–303 K. It was observed that the observed reaction rate constants, kobs, were increased in the presence of different weight percentages of ethanol and 2‐propanol. The fundamental rate constants of MG+ fading in these solutions were obtained by using the SESMORTAC model. In each series of experiments, the concentration of one alcohol was kept constant and the concentration of the second one was changed. It was observed that at the constant concentration of one alcohol and variable concentrations of the second one, with an increase in temperature, k2 values decrease according to the trend of hydroxide ion nucleophilic parameter values and k1 values increase. © 2011 Wiley Periodicals, Inc. Int J Chem Kinet 43: 441–453, 2011  相似文献   

5.
The kinetics of oxidation of 1‐methoxy‐2‐propanol and 1‐ethoxy‐2‐propanol by ditelluratocuprate(III) (DTC) in alkaline liquids has been studied spectrophotometrically in the temperature range of 293.2–313.2 K. The reaction rate showed first order dependence in DTC and fractional order with respect to 1‐methoxy‐2‐propanol or 1‐ethoxy‐2‐propanol. It was found that the pseudo‐first order rate constant kobs increased with an increase in concentration of OH? and a decrease in concentration of TeO42?. There is a negative salt effect. A plausible mechanism involving a pre‐equilibrium of a adduct formation between the complex and 1‐methoxy‐2‐propanol or 1‐ethoxy‐2‐propanol was proposed. The rate equations derived from mechanism can explain all experimental observations. The activation parameters along with the rate constants of the rate‐determining step were calculated.  相似文献   

6.
PAL  Amalendu GABA  Rekha 《中国化学》2007,25(12):1781-1789
Excess molar volumes Vm^E and kinematic viscosities v have been measured as a function of composition for binary mixtures of propylene glycol monomethyl ether (1-methoxy-2-propanol), MeOCH2CH(OH)Me, propylene glycol monoethyl ether (1-ethoxy-2-propanol), EtOCH2CH(OH)Me, propylene glycol monopropyl ether (1-propoxy-2-propanol), PrOCH2CH(OH)Me, propylene glycol monobutyl ether (1-butoxy-2-propanol), BuOCH2CH(OH)Me, and propylene glycol tert-butyl ether (1-tert-butoxy-2-propanol), t-BuOCH2CH(OH)Me with 1-butanol, and 2-butanol, at 298.15 K and atmospheric pressure. The excess molar volumes are negative across the entire range of composition for all the systems with 1-butanol, and positive for the systems 2-butanol+ 1-methoxy-2-propanol, and +1-propoxy-2-propanol, negative for the systems 2-butanol+1-butoxy-2-propanol, and change sign for the systems 2-butanol+ 1-ethoxy-2-propanol, and + 1-tert-butoxy-2-propanol. From the experimental data, the deviation in dynamic viscosity η from ∑χiηi has been calculated. Both excess molar volumes and viscosity deviations have been correlated using a Redlich-Kister type polynomial equation by the method of least-squares for the estimation of the binary coefficients and the standard errors.  相似文献   

7.
The complex formation between Zn2+, Cd2+ and Pb2+ ions with macrocyclic ligand, tetrathia12-crown-4 (12S4) was studied in dimethylsulfoxide (DMSO)–nitrobenzene binary mixtures at different temperatures using conductometric and 1H NMR methods. In all cases, 12S4 found to form 1:1 complexes with these cations. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the resulting molar conductance- and chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of DMSO in the solvent mixtures. The stability of the resulting M2+-12S4 complexes found to decrease in the order Pb2+ > Cd2+ > Zn2+. The values of ?H°, ?S° and ?G° for complexation reactions were evaluated from the temperature dependence of formation constants via van’t Hoff method. The obtained results revealed that, in all cases, the complexes are enthalpy stabilized, but entropy destabilized and the values of ?H° and ?S° are strongly depend on the nature of medium. There is also a linear relationship between all ΔH° and TΔS° values indicating the existence of entropy–enthalpy compensation in complexation of the three cations and ligand in the solvent systems studied.  相似文献   

8.
Proton NMR was used to study the complexation reaction of Rb+ ion with 18-crown-6 (18C6) in a number of binary dimethylsulfoxide (DMSO)–nitrobenzene (NB) mixtures at different temperatures. In all cases, the exchange between free and complexed 18C6 was fast on the NMR time scale and only a single population average 1H signal was observed. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift mole ratio data. There is an inverse relationship between the complex stability and the amount of DMSO in the solvent mixtures. The enthalpy and entropy values for the complexation reaction were evaluated from the temperature dependence of formation constants. In all solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized. The ?H° versus T?S° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reaction.  相似文献   

9.
Densities and ultrasonic velocities were measured for binary liquid mixtures of ethyl acetoacetate (EAA) with chloroform (CHCl3) and dimethylsulphoxide (DMSO) over the entire composition range. These experimental values were used to calculate the adiabatic compressibility (βs), intermolecular free length (Lf), excess molar volume (VE), excess adiabatic compressibility (βsE) and excess intermolecular free length (LfE) for the liquid mixtures under consideration. In all the excess parameters, a positive deviation was observed in CHCl3–EAA binary mixture, whereas a slight negative deviation was found for EAA–DMSO binary liquid mixture. These deviations were explained in terms of molecular interactions between like and unlike molecules and further affirmed by UV–Vis spectroscopic measurements in terms of polar and non-polar environment in the close proximity of solvatochromic dye. Fourier transform infrared spectroscopy (FT-IR) and proton-nuclear magnetic resonance (H1 NMR) measurements have also been done to explain the molecular interaction in the binary liquid mixtures.  相似文献   

10.
SET‐LRP is mediated by a combination of solvent and ligand that promotes disproportionation of Cu(I)X into Cu(0) and Cu(II)X2. Therefore, the diversity of solvents suitable for SET‐LRP is limited. SET‐LRP of MA in a library of solvents with different equilibrium constants for disproportionation of Cu(I)X such as DMSO, DMF, DMAC, EC, PC, EtOH, MeOH, methoxyethanol, NMP, acetone and in their binary mixtures with H2O was examined. H2O exhibits the highest equilibrium constant for disproportionation of Cu(I)X. The apparent rate constant of the polymerization exhibits a linear increase with the addition of H2O. This is consistent with higher equilibrium constants for disproportionation generated by addition of H2O to organic solvents. Furthermore, with the exception of alcohols and carbonates, the rate constant of polymerization in binary mixtures could be correlated with the Dimroth‐Reichardt solvent polarity parameter. This is consistent with the single‐electron transfer mechanism proposed for SET‐LRP that involves a polar transition state. These experiments demonstrate that the use of binary mixtures of solvents with H2O provides a new, simple and efficient method for the elaboration of a large diversity of reaction media that are suitable for SET‐LRP even when one of the two solvents does not mediate disproportionation of Cu(I)X. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5577–5590, 2009  相似文献   

11.
Electrical conductivity (σ), viscosity (η), and self‐diffusion coefficient (D) measurements of binary mixtures of aprotic and protic imidazolium‐based ionic liquids with water, dimethyl sulfoxide, and ethylene glycol were measured from 293.15 to 323.15 K. The temperature dependence study reveals typical Arrhenius behavior. The ionicities of aprotic ionic liquids were observed to be higher than those of protic ionic liquids in these solvents. The aprotic ionic liquid, 1‐butyl‐3‐methylimidazolium tetrafluoroborate, [bmIm][BF4], displays 100 % ionicity in both water and ethylene glycol. The protic ionic liquids in both water and ethylene glycol are classed as good ionic candidates, whereas in DMSO they are classed as having a poor ionic nature. The solvation dynamics of the ionic species of the ionic liquids are illustrated on the basis of the 1H NMR chemical shifts of the ionic liquids. The self‐diffusion coefficients D of the cation and anion of [HmIm][CH3COO] in D2O and in [D6]DMSO are determined by using 1H nuclei with pulsed field gradient spin‐echo NMR spectroscopy.  相似文献   

12.
Proton NMR was used to study the complexation reaction of Ag+ with octathia-24-crown-8 (OT24C8) in a number of binary dimethylsulfoxide (DMSO)–nitrobenzene (NB) mixtures at different temperatures. In all cases, the exchange between free and complexed OT24C8 was fast on the NMR time scale and only a single population average 1H signal was observed. The formation constants of the resulting 1:1 complexes in different solvent mixtures were determined by computer fitting of the chemical shift-mole ratio data. There is an inverse relationship between the complex stability and the amount of DMSO in the solvent mixtures. The enthalpy and entropy values for the complexation reaction were evaluated from the temperature dependence of formation constants. In all solvent mixtures studied, the resulting complex is enthalpy stabilized but entropy destabilized. The TΔS° versus ΔH° plot of all thermodynamic data obtained shows a fairly good linear correlation indicating the existence of enthalpy–entropy compensation in the complexation reaction.  相似文献   

13.
The viscosities, η, and refractive indices, n, of pure dimethylsulphoxide (DMSO), benzene, toluene, o‐xylene, m‐xylene, p‐xylene and mesitylene, and those of their 54 binary mixtures, with DMSO as common component, covering the whole composition range have been measured at 298.15, 303.15, 308.15, 313.15, and 318.15 K. From the experimental data, the deviations in viscosity, Δη and deviations in molar refraction, ΔRm have been calculated. The variation of these parameters with composition and temperature of the mixtures have been discussed in terms of molecular interaction in these mixtures. The effect of the number and position of the methyl groups in these aromatic hydrocarbons on molecular interactions in these mixtures has also been discussed. The free energies, ΔG*, enthalpies, ΔH* and entropies, ΔS* of activation of viscous flow have also been obtained by using Eyring viscosity equation. The ΔH* values were found independent of temperature. The dependence of these thermodynamic parameters on composition of the mixtures has been discussed. Further, the viscosities and refractive indices of these binary mixtures were calculated theoretically from pure component data by using various empirical and semi‐empirical relations and the results were compared with the experimental findings.  相似文献   

14.
Organic‐inorganic hybrid two‐dimensional (2D) perovskites (n≤5) have recently attracted significant attention because of their promising stability and optoelectronic properties. Normally, 2D perovskites contain a monocation [e.g., methylammonium (MA+) or formamidinium (FA+)]. Reported here for the first time is the fabrication of 2D perovskites (n=5) with mixed cations of MA+, FA+, and cesium (Cs+). The use of these triple cations leads to the formation of a smooth, compact surface morphology with larger grain size and fewer grain boundaries compared to the conventional MA‐based counterpart. The resulting perovskite also exhibits longer carrier lifetime and higher conductivity in triple cation 2D perovskite solar cells (PSCs). The power conversion efficiency (PCE) of 2D PSCs with triple cations was enhanced by more than 80 % (from 7.80 to 14.23 %) compared to PSCs fabricated with a monocation. The PCE is also higher than that of PSCs based on binary cation (MA+‐FA+ or MA+‐Cs+) 2D structures.  相似文献   

15.
Second‐order rate constants have been measured spectrophotometrically for the reactions of Op‐nitrophenyl thionobenzoate ( 1 , PNPTB) with HO?, butan‐2,3‐dione monoximate (Ox?, α‐nucleophile), and p‐chlorophenoxide (p‐ClPhO?, normal nucleophile) in DMSO/H2O of varying mixtures at (25.0±0.1) °C. Reactivity of these nucleophiles significantly increases with increasing DMSO content. HO? is less reactive than p‐ClPhO? toward 1 up to 70 mol % DMSO although HO? is over six pKa units more basic in these media. Ox? is more reactive than p‐ClPhO? in all media studied, indicating that the α‐effect is in effect. The magnitude of the α‐effect (i.e., k/kp) increases with the DMSO content up to 50 mol % DMSO and decreases beyond that point. However, the dependency of the α‐effect profile on the solvent for reactions of 1 contrasts to that reported previously for the corresponding reactions of p‐nitrophenyl benzoate ( 2 , PNPB); reactions of 1 result in much smaller α‐effects than those of 2 . Breakdown of the α‐effect into ground‐state (GS) and transition‐state (TS) effects shows that the GS effect is not responsible for the α‐effect across the solvent mixtures. The role of the solvent has been discussed on the basis of the bell‐shaped α‐effect profiles found in the current study as well as in our previous studies, that is, a GS effect in the H2O‐rich region through H‐bonding interactions and a TS effect in the DMSO‐rich media through mutual polarizability interactions.  相似文献   

16.
The feasibility of carrying out nucleophilic addition from electron‐deficient heteroaromatics has been addressed through a detailed investigation of the interaction of a two 7‐substituted‐nitrobenzofurazan (R = OMe 2a ; R = Cl 2b ) with a series of substituted‐nitroaryl anions (X = 4‐NO2 1a ; X = 3‐NO2 1b ; X = 4‐CN 1c ; X = 4‐Br 1d ), all reactions first lead to the quantitative formation of the σ‐adducts 3a–d and 4a–d arising from covalent addition of the nucleophile to the C‐5 carbon. The rate and equilibrium constants for the formation of σ‐adducts 3a–d and 4a–d (k5, K 5 ) together with the rate constants for their decomposition (k?5) have been determined in methanol at 25°C, allowing a determination of intrinsic rate constants, k0 = 0.03, the lower k0 value reflects the very strong salvation by methanol of the negative charge on the nitro group. The discovery of a linear correlation between the E and pKaMeOH parameters allows a calibration of the electrophilicity power of 2a and 2b , E = ?11.67 and ?10.29, respectively. Applying the general approach to nucleophilicity/electrophilicity recently developed by Mayr et al. through the relationship log k = s(E + N), a successful ranking of our nitroaryl anions 1a–d on the general nucleophilicity scale (N) has been carried out. The N values of 1a–d are found to cover a range from 15.78 to 16.69. The results are compared with previously reported data in water and DMSO.  相似文献   

17.
《Electroanalysis》2003,15(7):635-645
In this work, it is considered that charged molecules, such as the semiquinone (Q.?) and the benzoquinone dianion (Q2?), interact with weak donor protons (DH) via hydrogen bonding through consecutive association steps which depend on the concentration of DH. On the basis of a reversible voltammetric behavior, a model is presented for determining integer numbers of associated molecules of DH and the thermodynamic constants (βi) related with each association equilibrium. The electrochemical reduction of 1,4‐benzoquinone (Q) in the presence of different aliphatic alcohols and diols, in dimethylsulfoxide (DMSO), illustrates the utility of the model. Based on analysis of half‐wave potential variation according to the DH concentration, the association constants were determined for the Q.? and Q2? complexes with the different alcohols studied and mole‐fraction distribution diagrams were constructed. These diagrams explain the fractional values, produced using the typical model, widely reported in the literature, for study the hydrogen bonding between the electrochemically generated charged species with donor protons.  相似文献   

18.
Excess molar volumes (V E ) for binary mixtures of dimethyl sulphoxide (DMSO) with substituted benzenes have been measured at 303.15?K. The substituted benzenes include toluene, ethylbenzene, chlorobenzene, bromobenzene and nitrobenzene. The measured V E data is positive for the mixtures of DMSO with nitrobenzene and is completely negative over the entire composition range in the mixtures of toluene, ethylbenzene and chlorobenzene and an inversion in sign is observed in the bromobenzene system. The experimental results are analysed in terms of intermolecular interactions and effect of substitutents on benzene ring between unlike molecules.  相似文献   

19.
Rate constants kiso of the thermal cis‐trans isomerization of four 4,4’‐nitro‐aminoazobenzenes with different amino groups have been determined in homogeneous aprotic solvents and polyglykol oligomers, primarily by means of conventional flash photolysis. The rate constants have been correlated with polarity (according to λmax from UV/Vis absorption spectra of the trans isomers) and bulk viscosity of the solvents. Qualitative conclusions about the influence of varying concentrations of water with respect to polarity and hydrogen bonding on kiso‐ and λmax‐values in acetone/water mixtures were derived. Based on these results the data from microheterogeneous solutions have been interpreted. In microheterogeneous water/surfactant solutions kiso‐values of selected azo dyes were strongly dependent on the concentrations of SDS, Triton®X‐100, C12EO8 in water, and varied with the composition of bicontinuous microemulsions of Igepal® CA‐520/ heptane/water. The large spread of isomerization rate constants is in part due to varying microviscosity. Replacement of H2O by D2O in aqueous surfactant solutions produced surprisingly large kinetic solvent isotope effects. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 337–350, 1999  相似文献   

20.
Densities (ρ), speeds of sound (u), and isentropic compressibilities (k S) of binary mixtures of dimethyl sulfoxide (DMSO) with water, methanol, ethanol, 1-propanol, 2-propanol, acetone and cyclohexanone have been measured over the entire composition range at 293.15 and 313.15 K. The excess molar volumes (V E), the deviations in speed of sound (u E) and the deviations in isentropic compressibility (k S E) have been determined. The V E, u E and k S E values were fitted by the Redlich-Kister polynomial equation and the A k coefficients as well as the standard deviations (d) between the calculated and experimental values have been derived. The results obtained are discussed from the viewpoint of the existence of interactions between the components of the binary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号