首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated an ionic‐liquid‐based ultrasound/microwave‐assisted extraction method for the extraction of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one and 6‐methoxy‐benzoxazolin‐2‐one from etiolated maize seedlings. We performed single‐factor and central composite rotatable design experiments to optimize the most important parameters influencing this technique. The best results were obtained using 1.00 M 1‐octyl‐3‐methylimidazolium bromide as the extraction solvent, a 50°C extraction temperature, a 20:1 liquid/solid ratio (mL/g), a 21 min treatment time, 590 W microwave power, and 50 W fixed ultrasonic power. We performed a comparison between ionic‐liquid‐based ultrasound/microwave‐assisted extraction and conventional homogenized extraction. Extraction yields of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one and 6‐methoxy‐benzoxazolin‐2‐one by the ionic‐liquid‐based ultrasound/microwave‐assisted extraction method were 1.392 ± 0.051 and 0.205 ± 0.008 mg/g, respectively, which were correspondingly 1.46‐ and 1.32‐fold higher than those obtained by conventional homogenized extraction. All the results show that the ionic‐liquid‐based ultrasound/microwave‐assisted extraction method is therefore an efficient and credible method for the extraction of 2,4‐dihydroxy‐7‐methoxy‐1,4‐benzoxazin‐3‐one and 6‐methoxy‐benzoxazolin‐2‐one from maize seedlings.  相似文献   

2.
Mangiferin is the main bioactive component in mango leaves, which possesses anti‐inflammatory, antioxidative, antidiabetic, immunomodulatory, and antitumor activities. In the present study, a microwave‐assisted extraction method was developed for the extraction of mangiferin from mango leaves. Some parameters such as ethanol concentration, liquid‐to‐solid ratio, microwave power, and extraction time were optimized by single‐factor experiments and response surface methodology. The optimal extraction conditions were 45% ethanol, liquid‐to‐solid ratio of 30:1 (mL/g), and extraction time of 123 s under microwave irradiation of 474 W. Under optimal conditions, the yield of mangiferin was 36.10 ± 0.72 mg/g, significantly higher than that of conventional extraction. The results obtained are beneficial for the full utilization of mango leaves and also indicate that microwave‐assisted extraction is a very useful method for extracting mangiferin from plant materials.  相似文献   

3.
An aqueous solution of polyethylene glycol (PEG) as a green solvent was employed for the first time to develop the ultrasound‐assisted extraction of proanthocyanidins (PA) and chlorogenic acid (CA) from almond skin. The optimized extraction parameters were determined based on response surface methodology, and corresponded to an ultrasound power of 120 W, a liquid‐to‐solid ratio of 20:1 (mL/g), and a PEG concentration of 50% (v/v). Under these optimized conditions, the extraction yields of PAs and CA from almond skin were 32.68 ± 0.22 and 16.01 ± 0.19 mg/g, respectively. Compared with organic solvent extraction, PEG solution extraction produced higher yields. Different macroporous resins were compared for their performance in purifying PAs and CA from almond skin extract. Static adsorption/desorption experimental results demonstrated that AB‐8 resin exhibits excellent purification performance at pH 4. Under the optimized dynamic adsorption/desorption conditions on the AB‐8 column, the total recovery of purification for PAs and CA was 80.67%. The total content of PAs and CA in the preliminarily purified extract was 89.17% (with respective contents of 60.90 and 28.27%).  相似文献   

4.
A method for PEG‐based microwave‐assisted extraction (MAE) of flavonoid compounds from persimmon leaves has been successfully developed. The extraction efficiency of total flavonoid content was evaluated by the chromatographic peak areas of quercetin and kaempferol, which are two bioactive components typically found in persimmon leaves. The best combination of extraction parameters was obtained with response surface methodology. A microwave power of 525 W, liquid to solid ratio of 17:1 mL/g, and PEG aqueous solution concentration of 60% w/w were identified as the optimum parameters. Extraction dynamics analysis indicated that the quercetin, kaempferol, and total flavonoid contents were rising with increasing extraction time up to 20–25 min, from which point onwards they all decreased. Under the optimum conditions, quercetin, kaempferol, and total flavonoid contents obtained from the sample were 1.20 ± 0.05, 0.64 ± 0.11, and 16.90 ± 0.06 mg/g, respectively. Compared with ethanol‐based MAE, and ethanol‐based and PEG‐based ultrasonic‐assisted extractions, PEG‐based MAE had higher efficiency for the extraction of flavonoid compounds from persimmon leaves. Overall, PEG‐based MAE represents an efficient choice for the extraction of bioactive substances from traditional Chinese medicines.  相似文献   

5.
蔡玲  陈晓青  余俊  童星 《广州化学》2007,32(4):25-29
研究了水蓼中总黄酮的微波提取最佳工艺。采用单因素试验和正交试验考察微波功率、乙醇浓度、微波辐射时间、料液比对水蓼中总黄酮提取率的影响,优选提取工艺。最佳工艺条件为:微波功率为520W,乙醇浓度为60%,微波辐射60s,间歇辐射3次,料液比为1g∶20mL。结果表明,微波提取具有提取率高、提取速度快等特点,用于中草药的提取应用前景广阔。  相似文献   

6.
Cheng XL  Wan JY  Li P  Qi LW 《Journal of chromatography. A》2011,1218(34):5774-5786
Spatholobus suberectus is a widely used herb in traditional medicine for the treatment of blood stasis syndrome and related diseases. In this work, a potential ultrasonic/microwave assisted extraction (UMAE) method was developed for efficient sample pretreatment, and a diagnostic ion filtering strategy with liquid chromatography-quadrupole time-of-flight mass spectrometry (LC-Q-TOF-MS) was established for rapid characterization of flavonoids in S. suberectus. The factors of UMAE influencing the extraction yield of flavonoids of S. suberectus were evaluated. The optimal conditions were determined as: microwave power of 300 W, extraction time of 450 s, 70% methanol as extraction solvent, solvent to solid ratio of 20 mL/g, ultrasound power of 50 W, extraction temperature of 80 °C, and one extraction cycle. Compared with commonly used extraction methods, UMAE showed higher efficiency and shorter extraction time for sample preparation. Subsequently, the major diagnostic ions and fragmentation pathways of flavonoids in Q-TOF-MS were summarized with available reference compounds. Using a new diagnostic ion filtering strategy, a rapid screening and identification of thirty-eight compounds was achieved in real S. suberectus samples. The results of this study clearly demonstrate the potential of UMAE for efficient extraction and LC-Q-TOF-MS for rapid and sensitive structural elucidation of flavonoids in S. suberectus, and open perspectives for similar studies on other medicinal herbs.  相似文献   

7.
An ionic liquid‐based surfactant combined with microwave‐assisted extraction method, followed by RP‐HPLC‐diode array detection (DAD) with a core shell column, was successfully applied in extracting and quantifying four major phloroglucinols from Dryopteris fragrans. Eight ionic liquids with different cation and anion were investigated, and 1‐octyl‐3‐methylimidazolium bromide presented the best relative extraction efficiency for four phloroglucinols. The optimum conditions of this method were as follows: ionic liquid concentration 0.75 M, liquid/solid ratio 12:1 mL/g, extraction time 7 min, extraction temperature 50°C, and irradiation power 600 W. The quality analytical parameters of the method were obtained based on the linearity, precision, accuracy, detection, and quantification limits. The recoveries were between 96.90 and 103.5% with standard deviations not higher than 4.7%. Compared with ionic liquid‐based heat reflux extraction, ultrasonic‐assisted extraction, negative‐pressure cavitation extraction, and conventional microwave‐assisted extraction, the relative extraction efficiencies of the proposed method for four phloroglucinols increased 1.5–40.4%. The method was successfully applied for the quantification of four major phloroglucinols from D. fragrans. All these results suggest that the developed method represents an excellent alternative for the extraction and quantification of phloroglucinols in other plant materials.  相似文献   

8.
用超声波强化提取地骨皮中有机酸,采用单因素和正交试验方法研究了提取温度、提取时间、料液比、超声波功率对地骨皮中有机酸提取量的影响规律。结果表明超声波提取法的最佳工艺条件为提取温度65℃、提取时间35 min、料液比1∶16、超声波功率135 W,在此条件下地骨皮中总有机酸提取率为2.73%。  相似文献   

9.
《Electrophoresis》2017,38(8):1113-1121
Microwave extraction combined ultrasonic pretreatment of flavonoids from Periploca forrestii Schltr. was investigated in this study, extraction process was first performed in an ultrasonic cleaner, then treated by microwave irradiation. The optimum ultrasonic time of 25 min was selected by single‐factor experiments. A response surface methodology has been used to obtain a mathematical model that describes the process and analyzes the significant parameters ethanol concentration 59.92%, liquid to raw materials ratio 21.24 mL/g, microwave radiation time 209.53 s, and microwave power 274.14 w. In these optimum conditions, the yield of flavonoids from P. forrestii (TFPF) could be up to 9.11 ± 0.08%, which was increased by 14.30 and 19.86% compared microwave extraction and ultrasonic extraction, respectively. In vitro suppress hyaluronidase experimentation showed that TFPF purified using polyamide exhibited good anti‐hyaluronidase ability with IC50 value of 1.033 mg/mL, possessing certain anti‐antiallergic and potential application prospect in pharmaceutical production of treating inflammation and other related fields.  相似文献   

10.
Proanthocyanidins were separated for the first time from Cinnamomum longepaniculatum leaves. An experiment‐based extraction strategy was used to research the efficiency of an ultrasound‐assisted method for proanthocyanidins extraction. The Plackett–Burman design results revealed that the ultrasonication time, ultrasonic power and liquid/solid ratio were the most significant parameters among the six variables in the extraction process. Upon further optimization of the Box–Behnken design, the optimal conditions were obtained as follows: extraction temperature, 100°C; ethanol concentration, 70%; pH 5; ultrasonication power, 660 W; ultrasonication time, 44 min; liquid/solid ratio, 20 mL/g. Under the obtained conditions, the extraction yield of the proanthocyanidins using the ultrasonic‐assisted method was 7.88 ± 0.21 mg/g, which is higher than that obtained using traditional methods. The phloroglucinolysis products of the proanthocyanidins, including the terminal units and derivatives from the extension units, were tentatively identified using a liquid chromatography with tandem mass spectrometry analysis. Cinnamomum longepaniculatum proanthocyanidins have promising antioxidant and anti‐nutritional properties. In summary, an ultrasound‐assisted method in combination with a response surface experimental design is an efficient methodology for the sufficient isolation of proanthocyanidins from Cinnamomum longepaniculatum leaves, and this method could be used for the separation of other bioactive compounds.  相似文献   

11.
赵少丹  张露  刘军海 《广州化学》2013,(4):36-40,16
以柿子叶为原料,采用微波辅助法提取柿子叶中的β-胡萝卜素.在单因素的基础上,通过正交试验对工艺条件进行了优化.结果表明,最佳提取工艺条件为:微波温度25℃,微波时间60 s,液料比17∶1 mL/g,微波功率500W.在此最佳条件下β-胡萝卜素提取率可达31.25%.  相似文献   

12.
An effective and accurate method was developed for the extraction of astaxanthin from Laminaria japonica with subsequent separation by ionic liquid-based monolithic cartridge. The optimized extraction conditions including extraction solvent(ethanol), extraction time(90 min) and ultrasonic power(75 W) were obtained by systematical investigation. Chromatographic analysis was performed on a C18 column with ultraviolet(UV) detection at 476 nm, and a solution consisting of methanol/acetonitrile/H2O/dichloromethane(83:6:6:5, volume ratio) was used as the mobile phase at a flow rate of 0.7 mL/min. After ionic liquid-based monolithic solid phase extraction, 17.82 μg/g astaxanthin was obtained from Laminaria japonica. This ionic liquid-based monolithic cartridge exhibits high affinity and selectivity for astaxanthin, and it can be potentially used as the stationary phase of high performance liquid chromatography(HPLC).  相似文献   

13.
The simultaneous ultrasonic and microwave assisted extraction (UMAE) technique was first employed to obtain phenolics. The effects of UMAE variables including extraction time, microwave power, and solvent to solid radio on the yield of phenolics were investigated. The optimized conditions were as follows: solvent to solid ratio was 20:1 (ml/g), extraction time was 30 s, microwave power was 500 W and two times of extraction. Moreover, the phenolic yield of UMAE was higher than that by maceration, indicating a significant reduction of extraction time and an improvement of efficiency. The phenomenon is related to the strong disruption of leaf tissue structure by microwave induced expansion and ultrasonic shaking, which had been observed with the scanning electron microscopy. The phenolic compositions of the extract was then identified by ultra performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS), 10 compounds had been characterized, providing a more complete identification of phenolic compounds in burdock leaves than previously reported. The occurrence of benzoic acid and p-coumaric acid is reported for the first time. This study suggests that UMAE is a good alternative for the extraction of phenolics, with a great potential for industrial application. Also, UMAE provides a new sample preparation technique for characterization of the phenolic compounds from plants.  相似文献   

14.
This study investigated the use of ultrasound‐assisted extraction to improve the extraction efficiency of morphine, codeine and thebaine from the papaver plants. Extraction conditions such as type of solvent, temperature, duration, frequency and power level of ultrasonic were optimized and the influences of different parameters on resolution of alkaloids in CE were studied. The optimized condition for CE separation includes a sodium phosphate buffer (100 mM, pH 3.0) containing 5 mM α‐CD. The optimized extraction conditions for ultrasound‐assisted extraction was an extraction time of 1 h, an ultrasonic frequency of 60 kHz with water–methanol (80:20) at 40°C as the extraction solvent. The LOD for alkaloids was found to be 0.1 μg/mL at a signal‐to‐noise ratio of 3:1. The RSDs for peak areas were in the range of 1.4–4.4%. The amounts of opium alkaloids (mg/100 g dried sample) in four Iranian papaver plants were found to be in the range of 7.8–8.7 (morphine), 5.5–9.5 (codeine) and 1.4–10.4 (thebaine). It should be emphasized that no cleanup of the filtered extract was required; hence, direct determination after extraction drastically simplifies the analytical process.  相似文献   

15.
建立了一种用超声波辅助萃取-高效液相法测定烟草中β-D-吡喃葡萄糖-3-氧代-α-紫罗兰醇苷含量的新方法。以甲醇为萃取溶剂,超声萃取条件经过正交实验优化,优化后的条件为料液比1:40(m/V,g/mL)、萃取功率160W,萃取时间20 min。所得萃取液经大孔吸附树脂柱层析法分离后,用Waters SunFireC18(150 mm×4.6 mm,5μm)色谱柱分离,紫外检测器(波长为243nm)检测,流动相为V(乙腈):V(水)=20:80;流速1 mL/min。β-D-吡喃葡萄糖-3-氧代-α-紫罗兰醇苷在0.01~1 mg/mL范围内线性关系良好,相关系数为0.9994,相对标准偏差为1.8%,检出限为0.05μg/mL,平均回收率为87.80%。该方法适用于β-D-吡喃葡萄糖-3-氧代-α-紫罗兰醇苷的定量分析。  相似文献   

16.
A method based on ultrasonic extraction (USE) followed by LC-MS is presented for the determination of vitexin and isovitexin in pigeonpea extracts in this study. The influential parameters of the USE procedure were optimized, and the optimal conditions were as follows: extraction solvent, 60% ethanol solution; liquid/solid ratio 10:1 (mL/g), extraction power, 250 W; temperature, 40-50 degrees C; and three extraction cycles, each cycle 15 min. Validation of the USE method was performed in terms of repeatability and reproducibility. RSDs for extraction yields were lower than 5.85 and 8.09%, respectively. The LOD and LOQ of chromatographic determination were 0.96 and 3.2 ng/mL for vitexin and 0.84 and 2.8 ng/mL for isovitexin. The method was also successfully applied for the determination of vitexin and isovitexin in stems, leaves, and root extracts of pigeonpea. From all these results, we may conclude that the developed method is appropriate for the quality control of pigeonpea and other plant extract products developed from pigeonpea.  相似文献   

17.
An optimized microwave‐assisted extraction (MAE) method and an efficient HPLC analysis method were developed for fast extraction and simultaneous determination of oleanolic acid and ursolic acid in the fruit of Chaenomeles sinensis. The open vessel MAE process was optimized by using a central composite experimental design. The optimal conditions identified were microwave power 600 W, temperature 52°C, solvent to material ratio 32 mL/g and extraction time 7 min. The results showed that MAE is a more rapid extraction method with higher yield and lower solvent consumption. The HPLC–photodiode array detection analysis method was validated to have good linearity, precision, reproduction and accuracy. Compared with conventional extraction and analysis methods, MAE–HPLC–photodiode array detection is a faster, convenient and appropriate method for determination of oleanolic acid and ursolic acid in the fruits of C. sinensis.  相似文献   

18.
An optimized microwave‐assisted extraction (MAE) method and RP‐HPLC method were developed for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of Forsythia suspensa. The key parameters of the open‐vessel MAE process were optimized. A mixed solvent of methanol and water (70:30, v/v) was most suitable for the simultaneous extraction of the three components. The sample was soaked for 10 min before extraction. The optimized conditions were: microwave power 400 W, temperature 70°C, solvent‐to‐material ratio 30 mL/g, and extraction time 1 min. Compared to conventional extraction methods, the proposed method can simultaneously extract the three components in high yields and was proved to be a more rapid method with a lower solvent consumption. The optimized HPLC–photodiode array detection analysis was validated to have good linearity, precision, accuracy, and sensitivity. The developed MAE followed by RP‐HPLC is a fast and appropriate method for the simultaneous extraction and determination of rutin, forsythiaside A, and phillyrin in the fruits of F. suspensa.  相似文献   

19.
Hydrosoluble trehalose lipid (a biosurfactant) was employed for the first time as a green extraction solution to extract the main antioxidant compounds (geniposidic acid, chlorogenic acid, caffeic acid, and rutin) from functional plant tea (Eucommia ulmoides leaves). Single‐factor tests and response surface methodology were employed to optimize the extraction conditions for ultrasound‐assisted micellar extraction combined with ultra‐high‐performance liquid chromatography in succession. A Box‐Behnken design (three‐level, three‐factorial) was used to determine the effects of extraction solvent concentration (1–5 mg/mL), extraction solvent volume (5–15 mL), and extraction time (20–40 min) at a uniform ultrasonic power and temperature. In consequence, the best analyte extraction yields could be attained when the trehalose lipid solution concentration was prepared at 3 mg/mL, the trehalose lipid solution volume was 10 mL and the extraction time was set to 35 min. In addition, the recoveries of the antioxidants from Eucommia ulmoides leaves analyzed by this analytical method ranged from 98.2 to 102%. These results indicated that biosurfactant‐enhanced ultrasound‐assisted micellar extraction coupled with a simple ultra‐high‐performance liquid chromatography method could be effectively applied in the extraction and analysis of antioxidants from Eucommia ulmoides leaf samples.  相似文献   

20.
《Analytical letters》2012,45(9):1476-1484
This paper reports the extraction of two phenolic acids from Herba Artemisiae Scopariae using deep eutectic solvents that were synthesized with various salt and hydrogen bond donors. The optimal conditions were found to be 50% of a synthesized deep eutectic solvent from tetramethyl ammonium chloride and urea (1:4) mixed with methanol/water (60:40, v/v). Phenolic acid extraction was optimized using an ultrasonic power of 89 W for 30 min with a solid/liquid ratio of 1:10. Under the optimized conditions, good calibration curves were observed at phenolic acid concentrations ranging from 10.0 to 500.0 µg/mL. The method recovery ranged from 97.3% to 100.4%, and the inter-day and intra-day relative standard deviations were less than 5%. Under the optimal extraction conditions, the amounts of chlorogenic acid and caffeic acid extracted from Herba Artemisiae Scopariae were 9.35 mg/g and 0.31 mg/g, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号