首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Iodinated X‐ray contrast media are the most widely used pharmaceuticals for intravascular administration in X‐ray diagnostic procedures. The increasing concern of the fate of these compounds into the environment has led to the development of analytical methods to determine them. However, these methods present problems due to the polar character of these analytes. In this paper, hydrophilic interaction LC is presented as an alternative technique. The retention of iodinated X‐ray contrast media was studied in two bare silica phases with different particle designs (i.e. porous and Fused Core?) and a zwitterionic sulfoalkylbetaine phase. The effect of the most important parameters of the mobile phase was studied for each stationary phase. It was observed that optimal mobile phase conditions included buffers with a high buffering capacity. Additionally, the retention mechanisms involved were studied in order to provide some insight into the possible occurring interactions. The contributions of partition and adsorption and the effect of the temperature on the retention of analytes were evaluated on all of the stationary phases.  相似文献   

2.
In this study, the retention and selectivity of a mixture of basic polar drugs were investigated in hydrophilic interaction chromatographic conditions (HILIC) using nano-liquid chromatography (nano-LC). Six sympathomimetic drugs including ephedrine, norephedrine, synephrine, epinephrine, norepinephrine and norphenylephrine were separated by changing experimental parameters such as stationary phase, acetonitrile (ACN) content, buffer pH and concentration, column temperature. Four polar stationary phases (i.e. cyano-, diol-, aminopropyl-silica and Luna HILIC, a cross-linked diol phase) were selected and packed into fused silica capillary columns of 100 μm internal diameter (i.d.). Among the four stationary phases investigated a complete separation of the all studied compounds was achieved with aminopropyl silica and Luna HILIC stationary phases only. Best chromatographic results were obtained employing a mobile phase composed by ACN/water (92/8, v/v) containing 10 mM ammonium formate buffer pH 3. The influence of the capillary temperature on the resolution of the polar basic drugs was investigated in the range between 10 and 50 °C. Linear correlation of ln k vs. 1/T was observed for all the columns; ΔH° values were negative with Luna HILIC and positive with aminopropyl- and diol-silica stationary phases, demonstrating that different mechanisms were involved in the separation.To compare the chromatographic performance of the different columns, Van Deemter curves were also investigated.  相似文献   

3.
The most separations in HILIC mode are performed on silica-based supports. Nevertheless, recently published results have indicated that the metal oxides stationary phases also possess the ability to interact with hydrophilic compounds under HILIC conditions. This paper primarily describes the retention behaviour of model hydrophilic analytes (4-aminobenzene sulfonic acid, 4-aminobenzoic acid, 4-hydroxybenzoic acid, 3,4-diaminobenzoic acid, 3-aminophenol and 3-nitrophenol) on the polybutadine modified zirconia in HILIC. The results were simultaneously compared with a bare zirconia and a silica-based HILIC phase. The mobile phase strength, pH and the column temperature were systematically modified to assess their impact on the retention of model compounds. It was found that the retention of our model hydrophilic analytes on both zirconia phases was mainly governed by adsorption while on the silica-based HILIC phase partitioning was primarily involved. The ability of ligand-exchange interactions of zirconia surface with a carboxylic moiety influenced substantially the response of carboxylic acids on the elevated temperature as well as to the change of the mobile phase pH in contrast to the silica phase. However, no or negligible ligand-exchange interactions were observed for sulfanilic acid. The results of this study clearly demonstrated the ability of modified zirconia phase to retain polar acidic compounds under HILIC conditions, which might substantially enlarge the application area of the zirconia-based stationary phases.  相似文献   

4.
The influence of the mobile phase and temperature, on the retention behavior of seven aliphatic acids (pyruvic, gluconic, 2‐oxoglutaric, tartaric, malic, oxalic, and citric acid) in hydrophilic interaction liquid chromatography on zwitterionic stationary phases with sulfobetaine and phosphorylcholine ligands is investigated. In agreement with the van't Hoff model, most acids show linear ln k versus 1/T plots. However, the retention of structurally symmetrical oxalic and tartaric dicarboxylic acids is almost independent of temperature, or slightly increases at rising temperature. The experimental parameters of the van't Hoff plots suggest positive entropic contributions to the retention of these symmetrical acids, possibly connected with changes in molecular symmetry on their adsorption. The type of the zwitterionic stationary phase and the mobile phase composition (the molar concentration of acetate buffer and the volume fraction of acetonitrile) affect the retention and the selectivity of the separation of the acids.  相似文献   

5.
In this work, a revisit to the retention mechanism of HILIC was attempted to point out critical factors that contribute to the chromatographic regime as well as to bring out subtle details of the relative contribution of partitioning and surface adsorption. In this vein, the retention behaviour of a set of water-soluble vitamins (WSVs) and toluene on three silica based columns was evaluated under varying chromatographic conditions. The data obtained were associated with the hydration degree of the stationary phases and the ability of the organic solvents to disrupt the formation of the water-enriched layer. Moreover, the elution behaviour of toluene at different buffer salt concentrations in the mobile phase, confirmed the preferential partition of salt ions into the stagnant layer, as ACN content was increased. The results from the fitting of partitioning and surface adsorption models indicated differences in the contribution of the two retention mechanisms to both neutral and charged compounds. The occurrence of surface adsorption and the retentivity differences for neutral WSVs depend on the hydration degree and the hydrogen bonding properties of the solutes and the column surface, respectively. For charged solutes experiencing electrostatic repulsion, the contribution of the adsorption mechanism at highly organic mobile phases, emanates from both the weak effect of buffer salt ions on the electrostatic interaction and the strong effect of hydrophilic interactions. On the other hand, the chromatographic retention of electrostatically attracted solutes indicates that the surface adsorption dominates, even at mobile phases rich in water.  相似文献   

6.
Nowadays there are limited types of commercially available stationary phases for hydrophilic interaction liquid chromatography and therefore new ones with unique selectivity are urgently in demand to meet the need of separations of various polar and hydrophilic analytes. The present study describes the preparation and evaluation of a new stationary phase based on thiourea derivative modified silica for hydrophilic interaction liquid chromatography. Thiourea derivative was bonded onto the surface of silica particles via a mild addition reaction between –NH2 and –SCN, and the result of elemental analysis together with infrared analysis and solid‐state NMR spectroscopy proved that the synthesis method was feasible. The new stationary phase succeeded in fast separations of a wide range of polar and hydrophilic analytes and exhibited excellent separation performance, especially unique selectivity. Furthermore, the effects of water content, buffer pH, and salt concentration on retention indicated that a complicated separation mechanism rather than partitioning was involved in the stationary phase and hydrogen bonding interaction between analytes and thiourea functional group could play a very important role in its selectivity. For sure, the new stationary phase is of a great potential as a new type of hydrophilic interaction liquid chromatographic stationary phase.  相似文献   

7.
《Electrophoresis》2018,39(16):2144-2151
The chromatographic behavior of new biogenic purine nucleosides in hydrophilic interaction liquid chromatography was examined on three different stationary phases, namely bare silica, and amide‐ and cyclofructan‐based stationary phases. The effects of buffer concentration, pH and acetonitrile‐to‐aqueous‐part ratio in the mobile phase on retention and peak shape were assessed. The retention coefficients and peak symmetry values substantially differed with respect to analytes´ structures, stationary phase properties and mobile phase composition. The bare silica column was unsuitable for these compounds under the chromatographic conditions tested due to very broad and asymmetrical peaks. Furthermore, the cyclofructan‐based stationary phase provided almost Gaussian peak shapes of all deazapurine nucleosides under most conditions tested. Therefore, the cyclofructan‐based stationary phase is the most suitable choice for the chromatographic analysis of nucleosides.  相似文献   

8.
In this study, the retention behavior and selectivity differences of water‐soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water.  相似文献   

9.
Two polysaccharide stationary phases have been newly suggested for application in hydrophilic interaction chromatography (HILIC). Both columns (amylose‐silica, 250 × 4.6 mm, 5 μm and cellulose‐silica, 250 × 4.6 mm, 5 μm) demonstrated a satisfactory retention of polar compounds. The influence of the mobile‐phase composition (acetonitrile content, pH, salt concentration) on the retention was in agreement with the HILIC concept. The phases showed a very similar behavior, typical efficiency of about 50 000 plates/m, cellulose retained test compounds somewhat more strongly. Under the experimental conditions, electrostatic (non‐HILIC‐type) interactions due to the dissociation of silanol groups on the silica surface did not influence the retention, noticeably. The applicability of polysaccharide stationary phases for the chromatography of polar compounds was proven by the separation of mixtures of sugars (fructose, glucose, saccharose, maltose, trehalose) or vitamins (nicotinamide, pyridoxine, riboflavin, thiamine, nicotinic acid, ascorbic acid).  相似文献   

10.
The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono‐, di‐, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation.  相似文献   

11.
A novel cationic hydrophilic interaction monolithic stationary phase based on the copolymerization of 2-(methacryloyloxy)ethyltrimethylammonium methyl sulfate (META) and pentaerythritol triacrylate (PETA) in a binary porogenic solvent consisting of cyclohexanol/ethylene glycol was designed for performing capillary liquid chromatography. While META functioned as both the ion-exchange sites and polar ligand provider, the PETA, a trivinyl monomer, was introduced as cross-linker. The monolithic stationary phases with different properties were easily prepared by adjusting the amount of META in the polymerization solution as well as the composition of the porogenic solvent. The hydrophilicity of the monolith increased with increasing content of META in the polymerization mixture. A typical hydrophilic interaction chromatography mechanism was observed when the content of acetonitrile in the mobile phase was higher than 20%. The poly(META-co-PETA) monolith showed very good selectivity for neutral, basic and acidic polar analytes. For polar-charged analytes, both hydrophilic interaction and electrostatic interaction contributed to their retention. Peak tailing of basic compounds was avoided and the efficient separation of benzoic acid derivatives was obtained.  相似文献   

12.
A new stationary phase demonstrated effective separation towards polar analytes or their counterions within a single run.  相似文献   

13.
The retention behaviour of amino acids was studied in hydrophilic LC on zwitterionic stationary phases. Evaluation of the influences of acetonitrile/water content, ammonium acetate (NH4Ac) concentration and mobile phase pH values was performed. Fourteen amino acids were tested and they were all retained to varying extents, with poorer retention in high water content eluents. The linear relationship between the logarithm of retention factor and log(water content) indicated that adsorption dominated or at least was partly involved in the separation mechanism. Electrostatic and hydrophilic interactions also contributed to the retention of these amino acids under different separation conditions with various mobile phase pH values and NH4Ac concentrations. Thus, the overall retention mechanism could be explained as a combination of adsorption, electrostatic and hydrophilic interactions. The magnitude and contribution of each mechanism is dependent on the nature of the analyte and the separation conditions applied.  相似文献   

14.
Summary Three different phenyl phases were prepared. The amount of organic moiety bound on silica support was determined from thermogravimetric curves of the modified silica gel. The specific surface areas of gels were obtained from nitrogen sorption measurement at –196°C. The effect on separation and selectivity of the different bonded-phenyl functional groups was studied. The selectivity of the phenyl-bonded silica gels was examined and compared with octadecyl (ODS) silica in liquid chromatography. Corresponding to the high surface concentration of functional groups, the capacity factors of solutes, normalized to unit surface area of the adsorbent, k/SBET were found to decrease in the sequence phenylmethyl>diphenyl>triphenyl. Polar solutes are retained in greater extent on the phenyl phases than on the ODS phase.  相似文献   

15.
Summary The retention behavior of 15 peropyrene-type polycyclic aromatic hydrocarbons was investigated on various bonded stationary phases in reversed-phase liquid chromatography. On diphenyl and naphthylethyl bonded phases, high correlations were obtained between the molecular polarizability of solutes and their retention. However, very low or no correlations were found on various octadecyl bonded phases. These facts are discussed by using the electrostatic interaction concept between the solutes and the stationary phase. We conclude that these observations are due to two reasons: the difference in the degree of planarity of polycyclic aromatic hydrocarbons and the high ability of planarity recognition of octadecyl bonded phases.  相似文献   

16.
This review is devoted to the application of metal complexes as column packings and liquid stationary phases in gas chromatography. Particular attention is paid to the stationary phases with nitrogen-containing functional groups (e.g., amine and ketoimine) and β-diketonates on the modified silica surface. The review also concerns the results of the research on metallomesogenes and chiral stationary phases. The factors influencing the retention mechanism in complexation gas chromatography are discussed. Practical application of the metal chelate-containing chromatographic packings for analytical separation of organic substances is considered.  相似文献   

17.
A novel imidazolium‐embedded iodoacetamide‐functionalized silica‐based stationary phase has been prepared by surface radical chain‐transfer polymerization. The stationary phase was characterized by Fourier transform infrared spectrometry, thermogravimetric analysis, and element analysis. Fast and efficient separations of polar analytes, such as nucleosides and nucleic acid bases, water‐soluble vitamins and saponins, were well achieved in hydrophilic interaction chromatography mode. Additionally, a mixed mode of hydrophilic interaction and reversed‐phase could be also obtained in the analysis of polar and nonpolar compounds, including weak acidic phenols, basic anilines and positional isomers, with high resolution and molecular‐planarity selectivity, outperforming the commercially available amino column. Moreover, simultaneous separation of polar and nonpolar compounds was also achieved. In conclusion, the multimodal retention capabilities of the imidazolium‐embedded iodoacetamide‐functionalized silica‐based column could offer a wide range of retention behavior and flexible selectivity toward hydrophilic and hydrophobic compounds.  相似文献   

18.
Organic acids with very low pKa require extremely low pH conditions to achieve adequate retention in reversed‐phase liquid chromatography, but an extremely low pH mobile phase can cause instrument reliability problems and limit the choice of columns. Hydrophilic interaction chromatography is a potential alternative to reversed‐phase liquid chromatography for the separation of organic acids using more moderate conditions. However, the hydrophilic interaction chromatography separation mechanism is known to be very complex and involves multiple competing mechanisms. In the present study, a hydrophilic interaction chromatography column packed with bare silica core–shell particles was used as the separation column and six agricultural organic acids were used as model analytes to evaluate the effects of buffer concentration, buffer pH, and temperature on sample loading capacity, selectivity, retention, and repeatability. It was found that using a higher concentration of buffer can lead to a significant improvement in the overall performance and reproducibility of the separation. Investigation of column equilibration time revealed that a very long equilibration time is needed when changing mobile phase conditions in between runs. This limitation needs to be acknowledged in hydrophilic interaction chromatography method development and sufficient equilibration time needs to be allowed in method scouting.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号