首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
New interesting strategies for plasmid DNA (pDNA) purification were designed, exploiting affinity interactions between amino acids and nucleic acids. The potential application of arginine-based chromatography to purify pDNA has been recently described in our work; however, to achieve higher efficiency and selectivity in arginine affinity chromatography, it is essential to characterize the behaviour of binding/elution of supercoiled (sc) isoforms. In this study, two different strategies based on increased sodium chloride (225-250 mm) or arginine (20-70 mm) stepwise gradients are described to purify sc isoforms. Thus, it was proved that well-defined binding/elution conditions are crucial to enhance the purification performance, resulting in an improvement of the final plasmids yields and transfection efficiency, as this could represent a significant impact on therapeutic applications of the purified sc isoform.  相似文献   

2.
Superporous agarose beads have wide, connecting flow pores allowing large molecules such as plasmids to be transported into the interior of the beads by convective flow. The pore walls provide additional surface for plasmid binding thus increasing the binding capacity of the adsorbent. Novel superporous agarose anion exchangers have been prepared, differing with respect to bead diameter, superpore diameter and type of anion-exchange functional group (poly(ethyleneimine) and quaternary amine). The plasmid binding capacities were obtained from breakthrough curves and compared with the binding capacity of homogeneous agarose beads of the same particle size. Significantly, the smaller diameter superporous agarose beads were found to have four to five times higher plasmid binding capacity than the corresponding homogeneous agarose beads. The experimentally determined plasmid binding capacity was compared with the theoretically calculated surface area for each adsorbent and fair agreement was found. Confocal microscopy studies of beads with adsorbed, fluorescently labelled plasmids aided in the interpretation of the results. Superporous poly(ethyleneimine)-substituted beads with a high ion capacity (230 micromol/ml) showed a plasmid binding of 3-4 mg/ml adsorbent. Superporous quaternary amine-substituted beads had a lower ion capacity (81 micromol/ml) and showed a correspondingly lower plasmid binding capacity (1-2 mg/ml adsorbent). In spite of the lower capacity, the beads with quaternary amine ligand were preferred, due to their much better plasmid recovery (70-100% recovery). Interestingly, both capacity and recovery was improved when the plasmid adsorption step was carried out in the presence of a moderate salt concentration. The most suitable superporous bead type (45-75 microm diameter beads; 4 microm superpores; quaternary amine ligand) was chosen for the capture of plasmid DNA from a clarified alkaline lysate. Two strategies were evaluated, one with and one without enzymatic digestion of RNA. The strategy without RNase gave high plasmid recovery, quantitative removal of protein and a 70% reduction in RNA.  相似文献   

3.
Efficient loading of immunoglobulin G in mixed‐mode chromatography is often a serious bottleneck in the chromatographic purification of immunoglobulin G. In this work, a mixed‐mode ligand, 4‐(1H‐imidazol‐1‐yl) aniline, was coupled to Sepharose Fast Flow to fabricate AN SepFF adsorbents with ligand densities of 15–64 mmol/L, and the chromatographic performances of these adsorbents were thoroughly investigated to identify a feasible approach to improve immunoglobulin G purification. The results indicate that a critical ligand density exists for immunoglobulin G on the AN SepFF adsorbents. Above the critical ligand density, the adsorbents showed superior selectivity to immunoglobulin G at high salt concentrations, and also exhibited much higher dynamic binding capacities. For immunoglobulin G purification, both the yield and binding capacity increased with adsorbent ligand density along with a decrease in purity. It is difficult to improve the binding capacity, purity, and yield of immunoglobulin G simultaneously in AN SepFF chromatography. By using tandem AN SepFF chromatography, a threefold increase in binding capacity as well as high purity and yield of immunoglobulin G were achieved. Therefore, the tandem chromatography demonstrates that AN SepFF adsorbent is a practical and feasible alternative to MEP HyperCel adsorbents for immunoglobulin G purification.  相似文献   

4.
Chromatography is one of the key operations in the downstream processing of plasmid DNA (pDNA). However, the increased demand for highly purified pDNA experienced in recent years has made clear the need for alternative processes capable of retaining the advantages of conventional chromatography, such as selectivity, while providing increased throughput at a lower cost. The work presented in this article outlines the development and optimization of an alternative hydrophobic interaction membrane chromatography process for the purification of pDNA. The studies included the modification of functionalized membrane supports with a linear alkyl chain ligand and the testing of chromatographic performance of these membranes. Three modification procedures were tested and the membranes were screened for their capacity and selectivity. The modified membranes could separate the model plasmid pVAX1‐LacZ (6050 bp) from impurities in clarified Escherichia coli cell lysates (specifically RNA), with good resolution. Subsequent optimization of elution profiles with the best‐performing modified membrane, resulted in a high purification factor of 4.7, competitive with its bead process counterpart, and a plasmid yield of 73%.  相似文献   

5.
Conceptually, on‐bead screening is one of the most efficient high‐throughput screening (HTS) methods. One of its inherent advantages is that the solid support has a dual function: it serves as a synthesis platform and as a screening compartment. Compound purification, cleavage and storage and extensive liquid handling are not necessary in bead‐based HTS. Since the establishment of one‐bead one‐compound library synthesis, the properties of polymer beads in chemical reactions have been thoroughly investigated. However, the characterization of the kinetics and thermodynamics of protein–ligand interactions on the beads used for screening has received much less attention. Consequently, the majority of reported on‐bead screens are based on empirically derived procedures, independent of measured equilibrium constants and rate constants of protein binding to ligands on beads. More often than not, on‐bead screens reveal apparent high affinity binders through strong protein complexation on the matrix of the solid support. After decoding, resynthesis, and solution testing the primary hits turn out to be unexpectedly weak binders, or may even fall out of the detection limit of the solution assay. Only a quantitative comparison of on‐bead binding and solution binding events will allow systematically investigating affinity differences as function of protein and small molecule properties. This will open up routes for optimized bead materials, blocking conditions and other improved assay procedures. By making use of the unique features of our previously introduced confocal nanoscanning (CONA) method, we investigated the kinetic and thermodynamic properties of protein–ligand interactions on TentaGel beads, a popular solid support for on‐bead screening. The data obtained from these experiments allowed us to determine dissociation constants for the interaction of bead‐immobilized ligands with soluble proteins. Our results therefore provide, for the first time, a comparison of on‐bead versus solution binding thermodynamics. Our data indicate that affinity ranges found in on‐bead screening are indeed narrower compared to equivalent interactions in homogeneous solution. A thorough physico‐chemical understanding of the molecular recognition between proteins and surface bound ligands will further strengthen the role of on‐bead screening as an ultimately cost‐effective method in hit and lead finding.  相似文献   

6.
Immobilized metal affinity monolith column as a new class of chromatographic support is shown to be superior to conventional particle-based column as plasmid DNA (pDNA) purification platform. By harnessing the affinity of endotoxin to copper ions in the solution, a majority of endotoxin (90%) was removed from the alkaline cell lysate using CuCl(2)-induced precipitation. RNA and remaining endotoxin were subsequently removed to below detection limit with minimal loss of pDNA using either monolith or particle-based column. Monolith column has the additional advantage of feed concentration and flowrate-independent dynamic binding capacity for RNA molecules, enabling purification process to be conducted at high feed RNA concentration and flowrate. The use of monolith column gives three fold increased productivity of pDNA as compared to particle-based column, providing a more rapid and economical platform for pDNA purification.  相似文献   

7.
8.
The purification of proteins by affinity chromatography is based on their highly specific interaction with an immobilized ligand followed by elution under conditions where their affinity towards the ligand is markedly reduced. Thus, a high-degree purification by a single chromatographic step is achieved. However, when several proteins in the crude mixture share affinity to a common immobilized ligand, they may not be resolved by affinity chromatography and subsequent "real" chromatographic purification steps may be required. It is shown that by using properly selected gradient elution conditions, the affinities of the various proteins towards the immobilized ligand may be gradually modulated and their separation may be achieved. This is exemplified by the isolation and separation of a group of Ca(2+)-activated proteins, Calmodulin, S100a and S100b, from bovine brain extract, using a melittin-Eupergit C affinity column which is developed with Ca(2+)-chelator gradients. As expected, separation of the three proteins into individual peaks, eluted in order of increasing affinity to the matrix, was obtained. Sigmoid selectivity curves calculated from the elution volumes under different elution conditions for each of the proteins were obtained, illustrating the chromatographic behaviour of the gradient affinity separation system.  相似文献   

9.
The use of therapeutics based on plasmid DNA (pDNA) relies on procedures that efficiently produce and purify the supercoiled (sc) plasmid isoform. Several chromatographic methods have been applied for the sc plasmid purification, but with most of them it is not possible to obtain the required purity degree and the majority of the supports used present low capacity to bind the plasmid molecules. However, the chromatographic monolithic supports are an interesting alternative to conventional supports due to their excellent mass transfer properties and their high binding capacity for pDNA. The separation of pDNA isoforms, using short non-grafted monolithic column with CarbonylDiImidazole (CDI) functional groups, is described in the current work. The effect of different flow rates on plasmid isoforms separation was also verified. Several breakthrough experiments were designed to study the effect of different parameters such as pDNA topology and concentration as well as flow rate on the monolithic support binding capacity. One of the most striking results is related to the specific recognition of the sc isoform by this CDI monolith, without flow rate dependence. Additionally, the binding capacity has been found to be significantly higher for sc plasmid, probably because of its compact structure, being also improved when using feedstock with increased plasmid concentrations and decreased linear velocity. In fact, this new monolithic support arises as a powerful instrument on the sc pDNA purification for further clinical applications.  相似文献   

10.
Chung WJ  Kim MS  Cho S  Park SS  Kim JH  Kim YK  Kim BG  Lee YS 《Electrophoresis》2005,26(3):694-702
A bead affinity chromatography system, which was based on the photolytic elution method, was integrated into a glass-silicon microchip to purify specific target proteins. CutiCore beads, which were coupled with a photo-cleavable ligand, such as biotin and an RNA aptamer, were introduced into a filter chamber in the microchip. The protein mixture containing target protein labeled with fluorescein isothiocyanate (FITC) was then passed through the packed affinity beads in the microchamber by pressure-driven flow. During the process, the adsorbed protein on the bead was monitored by fluorescence. The concentrated target protein on the affinity bead was released by simple irradiation with UV light at a wavelength of 360 nm, and subsequently eluted with the phosphate buffer flow. The eluted target protein was quantitatively detected via the fluorescence intensity measurements at the downstream of the capillary connected to the outlet of the microchip. The microaffinity purification allowed for a successful method for the identification of specific target proteins from a protein mixture. In addition, the feasibility of this system for use as a diagnosis chip was demonstrated.  相似文献   

11.
N-Acetyl-D-(-)-penicillamine as a stable second-generation biospecific affinity ligand has previously been suggested for purification of Bacillus cereus 569/H beta-lactamase I. A complex spacer arm is coupled with the matrix by using epichlorohydrin and phloroglucinol doubly activated with divinyl sulphone in the meta position. Coupling of D-(-)-penicillamine ligand resulted in an active affigel. However, we found that two affinity ligands in close proximity prevents simultaneous binding of two penicillinase molecules, therefore one ligand is superfluous. Our results show that: (1) shortening the spacer arm by direct activation of the matrix with divinyl sulphone is satisfactory to produce the affinity material with N-acetyl-D-(-)-penicillamine; (2) incorporation of 15 mumol of N-acetyl-D-(-)-penicillamine per ml of wet Sepharose 4B satisfies the maximum binding capacity requirements of the affigel (about half of the originally incorporated amount of ligand); (3) our simplified affinity adsorbent is generally applicable for large-scale purification of penicillinases to homogeneity from various bacterial sources by the convenient batch method without prior concentration of these enzymes; (4) reacetylation for four/five times can regenerate the original binding capacity of the affigel.  相似文献   

12.
A simple and efficient method based on magnetic‐bead technology has been developed for the enrichment of thiol‐containing biomolecules, such as l ‐glutathione and cysteine‐containing peptides. The thiol‐binding site on the bead is a mononuclear complex of zinc(II) with 1,4,7,10‐tetraazacyclododecane (cyclen); this is linked to a hydrophilic cross‐linked agarose coating on a particle that has a magnetic core. All steps for the thiol‐affinity separation are conducted in aqueous buffers with 0.10 mL of the magnetic beads in a 1.5 mL microtube. The entire separation protocol for thiol‐containing compounds, from addition to elution, requires less than one hour per sample, provided the buffers and the zinc(II)–cyclen‐functionalized magnetic beads have been prepared in advance. The thiol‐affinity magnetic beads are reusable at least 15 times without a decrease in their thiol‐binding ability, and they are stable for six months at room temperature.  相似文献   

13.
We report on the preparation of an improved multi-lectin affinity support for HPLC separations. We combined the selectivity of three different lectins: concanavalin A (ConA), wheat germ agglutinin (WGA), and jacalin (JAC). Each lectin was first covalently immobilized onto a polymeric matrix and then the three lectin media were combined in equal ratios. The beads were packed into a column to produce a mixed-bed multi-lectin HPLC column (high-performance multi-lectin affinity chromatography (HP-M-LAC)) for fast chromatographic affinity separations. The support was characterized with respect to kinetics of immobilization, ligand density, and binding capacity for human plasma glycoproteins. A high lectin density (15 mg/mL of beads) was found to be optimal for the binding of glycoproteins from human plasma. A single clinical sample can be fractionated in less than 10 min per run, making this a useful sample preparation tool for proteomics/glycoproteomics studies associated with disease abnormalities.  相似文献   

14.
L‐Arginine exhibits a wide range of biological activities through a complex and highly regulated set of pathways that remain incompletely understood at both the whole‐body and the cellular levels. The aim of this study is to develop and validate effective purification system for L‐arginine interacting factors (AIFs). We have recently developed novel magnetic nanobeads (FG beads) composed of magnetite particles/glycidyl methacrylate (GMA)–styrene copolymer/covered GMA. These nanobeads have shown higher performance compared with commercially available magnetic beads in terms of purification efficiency. In this study, we have newly developed L‐arginine methyl ester (L‐AME)‐immobilized beads by conjugating L‐AME to the surface of these nanobeads. Firstly, we showed that inducible nitric oxide synthase, which binds and uses L‐arginine as a substrate, specifically bound to L‐AME‐immobilized beads. Secondly, we newly identified phosphofructokinase, RuvB‐like 1 and RuvB‐like 2 as AIFs from crude extracts of HeLa cells using this affinity chromatographic system. The data presented here demonstrate that L‐AME‐immobilized beads are effective tool for purification of AIFs directly from crude cell extracts. We expect that the present method can be used to purify AIFs from various types of cells. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
The present work deals with the development and characterization of a tryptophan based pseudobioaffinity adsorbent for the purification of monoclonal and polyclonal antibodies. Tryptophan as a ligand was selected based on molecular docking and experimental screening studies of the amino acids involved in IgG-Protein A interaction. The ligand was coupled to a polymethacrylate based rigid, porous SEPABEADS beaded matrix to obtain the desired affinity adsorbent, which was named AbSep. Characterization studies with regards to the effect of matrix properties (pore size, particle size, nature of matrix, spacer arm) and the medium properties (pH, conductivity, additives) were performed to elucidate the nature of IgG-AbSep interactions and to determine the optimal conditions for obtaining high binding and purity of IgG. The equilibrium binding capacity of AbSep and dissociation constant was found to be 78 mg/ml and 5.31×10(-6)M respectively. AbSep was able to successfully purify polyclonal human IgG from plasma and monoclonal antibody (chimeric IgG1) from CHO cell culture supernatant. Both binding and elution steps were performed at near neutral pH resulting in a purity and recovery of more than 90% and 85% respectively. Additionally, AbSep was shown to be stable to 0.5M NaOH solutions, the preferred agent for cleaning and sanitization of chromatographic media.  相似文献   

16.
In this study, an efficient affinity purification protocol for an alkaline metalloprotease from marine bacterium was developed using immobilized metal affinity chromatography. After screening and optimization of the affinity ligands and spacer arm lengths, Cu‐iminmodiacetic acid was chosen as the optimal affinity ligand, which was coupled to Sepharose 6B via a 14‐atom spacer arm. The absorption analysis of this medium revealed a desorption constant Kd of 21.5 μg/mL and a theoretical maximum absorption Qmax of 24.9 mg/g. Thanks to this affinity medium, the enzyme could be purified by only one affinity purification step with a purity of approximately 95% pure when analyzed by high‐performance liquid chromatography and reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis. The recovery of the protease activity reached 74.6%, which is much higher than the value obtained by traditional protocols (8.9%). These results contribute to the industrial purifications and contribute a significant reference for the purification of other metalloproteases.  相似文献   

17.
The pancreas contains two very analogous enzymes: trypsin and chymotrypsin. These two enzymes are very similar in their physicochemical characteristics and are therefore quite difficult to separate by classical purification procedures. They constitute a good model for affinity chromatography. It was previously demonstrated that amidine derivatives are able to interact strongly and specifically with these serine proteases and are often used as ligand in affinity chromatography. To understand the trypsin interaction mechanism, we synthesized different amidines and immobilised them with or without spacer arm on silica beads previously coated by dextran substituted with a calculated amount of positively charged diethylaminoethyl functions, in order to minimize the non-specific interactions of silanol groups of the silica material. First the affinity constant and the adsorption capacity of these supports for trypsin were determined in batch procedures, then they were used in affinity chromatography. The effects of ionic strength, pH and competitive inhibitors on proteins desorption were also studied. Last, to demonstrate the importance of passivation, the chromatographic performances of dextran-coated silica phases and a commercial support grafted with the same amidine were compared.  相似文献   

18.
An integrated process for purifying a 6.1 kilo base pair (kbp) plasmid from a clarified Escherichia coli cell lysate based on an ultra/diafiltration step combined with polymer/polymer aqueous two-phase system and a new type of chromatography is described. The process starts with a volume reduction (ultrafiltration) and buffer exchange (diafiltration) of the clarified lysate using a hollow fibre membrane system. The concentrated and desalted plasmid solution is then extracted in a thermoseparating aqueous two-phase system, where the contaminants (RNA and proteins) to a large extent are removed. While the buffer exchange (diafiltration) is necessary in order to extract the plasmid DNA exclusively to the top phase, experiments showed that the ultrafiltration step increased the productivity of the aqueous two-phase system by a factor of more than 10. The thermoseparated water phase was then subjected to a polishing step using lid bead chromatography. Lid beads are a new type of restricted access chromatography beads, here with a positively charged inner core that adsorbed the remaining RNA while its inert surface layer prevented adsorption of the plasmid DNA thus passing in the flow-through of the column. Differently-sized plasmid DNA in the range of 2.7-20.5 kbp were also partitioned in the aqueous two-phase system. Within this size range, all plasmid DNA was exclusively extracted to the top phase. The complete process is free of additives and easy scalable for use in large scale production of plasmid DNA. The overall process yield for plasmid DNA was 69%.  相似文献   

19.
Protein‐folding liquid chromatography (PFLC) is an effective and scalable method for protein renaturation with simultaneous purification. However, it has been a challenge to fully refold inclusion bodies in a PFLC column. In this work, refolding with simultaneous purification of recombinant human proinsulin (rhPI) from inclusion bodies from Escherichia coli were investigated using the surface of stationary phases in immobilized metal ion affinity chromatography (IMAC) and high‐performance size‐exclusion chromatography (HPSEC). The results indicated that both the ligand structure on the surface of the stationary phase and the composition of the mobile phase (elution buffer) influenced refolding of rhPI. Under optimized chromatographic conditions, the mass recoveries of IMAC column and HPSEC column were 77.8 and 56.8% with purifies of 97.6 and 93.7%, respectively. These results also indicated that the IMAC column fails to refold rhPI, and the HPSEC column enables efficient refolding of rhPI with a low‐urea gradient‐elution method. The refolded rhPI was characterized by circular dichroism spectroscopy. The molecular weight of the converted human insulin was further confirmed with SDS–18% PAGE, Matrix‐Assisted Laser Desorption/ Ionization Time of Flight Mass Spectrometry (MALDI‐TOF‐MS) and the biological activity assay by HP‐RPLC. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Composite cryogels containing porous adsorbent particles were prepared under cryogelation conditions. The composites with immobilized concanavalin A (Con A) were used for capturing glycoproteins. Adsorbent particles were introduced into the structure in order to improve the capacity and to facilitate the handling of the particles. The monolithic composite cryogels were produced from suspensions of polyvinyl alcohol particles and porous adsorbent particles and cross‐linked under acidic conditions at sub‐zero temperature. The cryogels were epoxy activated and Con A was immobilized as an affinity ligand. Binding and elution of horseradish peroxidase (HRP) was studied in batch experiment and in a chromatographic setup. Increasing adsorbent concentration in composite cryogels will increase ligand density, which therefore enhances the amount of bound HRP from 0.98 till 2.9 (milligram enzyme per milliliter of gel) in the chromatographic system. The material was evaluated in 10 cycles for binding and elution of HRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号