首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Temperature modulated dynamic mechanical analysis (TMDMA) was performed in the same way as temperature modulated DSC (TMDSC) measurements. Temperature modulation with amplitude 0.5 K and period 20 min was realised by a series of linear heating and cooling cycles (saw-tooth modulation). As in TMDSC TMDMA allows for the investigation of reversible and non-reversible phenomena in the melting and crystallisation region of polymers. The advantage of TMDMA compared to TMDSC is the high sensitivity for small and slow changes in crystallinity, e.g. during re-crystallisation. The combination of TMDMA and TMDSC yields new information about local processes at the surface of polymer crystallites. It is shown that during and after isothermal crystallisation the surface of the individual crystallites is in equilibrium with the surrounding melt.  相似文献   

2.
Quasi-isothermal temperature modulated DSC and DMA measurements (TMDSC and TMDMA, respectively) were performed to determine heat capacity and shear modulus as a function of time during crystallization. Non-reversible and reversible phenomena in the crystallization region of polymers can be observed. The combination of TMDSC and TMDMA yields new information about local processes at the surface of polymer crystals, like reversible melting. Reversible melting can be observed in complex heat capacity and in the amplitude of shear modulus in response to temperature perturbation. The fraction of material involved in reversible melting, which is established during main crystallization, keeps constant during secondary crystallization for PCL PET and PEEK. This shows that also after long crystallization times the surfaces of the individual polymer crystallites are in equilibrium with the surrounding melt. Simply speaking, polymer crystals are ‘living crystals’. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Temperature-modulated DSC (TMDSC) was used to enhance the perfection of crystals of different poly(p-phenylene sulfide) samples formed during slow cooling from the melt. The sample preparation was made with modulated cooling using a cool-heat mode. Re-heating the samples prepared by slow conventional and modulated coolings indicated that the melting point of the samples prepared by modulated cooling is considerably higher than the melting point of the samples crystallized with conventional cooling. Thus, the perfection of crystallites can be improved if the outer layers just deposited on their surface are re-melted and re-crystallized immediately.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

4.
Quasi-isothermal temperature modulated DSC (TMDSC) were performed during crystallization to determine heat capacity as function of time and frequency. Non-reversible and reversible phenomena in the crystallization region of polymers were distinguished. TMDSC yields new information about the dynamics of local processes at the surface of polymer crystals, like reversible melting. The fraction of material involved in reversible melting, which is established during main crystallization, keeps constant during secondary crystallization for polycaprolactone (PCL). This shows that also after long crystallization times the surfaces of the individual crystallites are in equilibrium with the surrounding melt. Simply speaking, polymer crystals are living crystals. A strong frequency dependence of complex heat capacity can be observed during and after crystallization of polymers.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Phase change materials (PCM) provide thermoregulation originating from the latent heat exchanged during melting or crystallisation. Linear hydrocarbons have weak interactions, but high symmetry, providing an effective quantity of latent heat over the most acceptable temperature range for applications. The ability to both melt and crystallise over a narrow range is made complex by nucleation, polymorphism and the kinetic nature of these changes. Differential scanning calorimetry (DSC), optical microscopy and temperature modulated DSC (TMDSC) was used to study the melting of n-eicosane. This PCM has a low degree of supercooling and conversion to the most stable crystalline state (triclinic) that occurs rapidly from a metastable phase (rotator) state on cooling. TMDSC revealed a small, yet similar degree of thermodynamic reversibility in the melting of each of the crystalline phases.  相似文献   

6.
Crystallized samples of poly(butylene terephthalate) (PBT), examined in the melting region by means of temperature modulated differential scanning calorimetry (TMDSC), show reversible fusion. The analysis of the complex heat capacity reveals that the fusion of poor crystallites can follow temperature modulation more easily than perfect crystals, in agreement with the findings recently reported in the literature, and that the amount of reversible melting decreases with increasing the modulation frequency.  相似文献   

7.
Temperature modulated differential calorimetry (TMDSC) is used to examine the crystal-crystal transitions of poly(tetrafluoroethylene). This study gives new information about the dynamic thermal behavior of such transitions. The involvement of reversible and irreversible processes during the phenomenon is observed, which are related to the order-disorder changes occurring during the transition.This study adds a new example to the response of TMDSC during first order transitions.  相似文献   

8.
Poly(d,l-lactide) microspheres with progesterone loadings of 0, 10, 20, 30 and 50% w/w were manufactured using an interrupted solvent evaporation process. Spherical microspheres with loadings close to the theoretical values were produced. The glass transition of the polymer could be identified by a step change in the heat capacity measured by TMDSC. Progesterone was found to plasticise the glass transition temperature at contents of 20% w/w or less. At a 30% loading, cold crystallisation of progesterone was seen indicating that an amorphous form of the drug was present; these microspheres were found to exhibit a pitted surface. TMDSC of the 50% progesterone samples suggested that most of the drug was present as crystals. This was supported by the SEM and PXRD results. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
Blends of poly(ether ketone) (PEK) with poly(terephthaloyl-imide) (a thermoplasticpolyimide, TPI) were studied by temperature-modulated DSC (TMDSC) and X-ray diffraction. Samples were prepared by compression moulding of the premixed materials at 400°C and quenched to prevent crystallisation.The amorphous blends showed a single glass transition but with a jump in the temperature value at 60 mass% of PEK, indicating limited miscibility of the system at both sides of the composition series in the quenched, glassy state. Two cold crystallisation peaks over the concentration range 30 to 70 mass% of PEK were observed, but only one for all other compositions. A single melting peak was observed in all systems.Blends crystallised from the glassy state showed eutectic behaviour with the presence of the crystals of both pure components. This is the first reported case of two semicrystalline polymers exhibiting eutectic co-crystallisation. The formation of eutectic crystals is proof of full miscibility of the two polymers in their liquid state, i.e. at a temperature of 400°C and above. Blends cooled from the melt at a cooling rate of 2 K min–1 showed a single glass transition and an extended melting range.Crystallisation during a second melting run generally starts at a different temperature then during the first run indicating chemical changes occurred in the molten state. This change was also verified by an exothermic peak above the melting temperature using TMDSC.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

10.
Temperature-modulated differential scanning calorimetry (TMDSC) has been used to study the melting of a series of blends containing linear low-density polyethylene (LLDPE) and very low-density polyethylenes (VLDPE) with long chain branches. After the blends were subjected to different thermal histories including thermal fractionation by stepwise isothermal cooling, they were examined by TMDSC. TMDSC curves have been interpreted in terms of a combination of the reversing and non-reversing specific heats that result from reversible and irreversible events at the time and temperature, which they are detected, respectively. It was found that crystals formed at different crystallisation conditions had different internal order; hence they showed different amounts of reversing and non-reversing contributions. There is no exothermic activity seen in the non-reversing signal for the thermally fractionated polymers and their blends suggesting formation of crystals approaching equilibrium. In contrast, polymers and blends cooled at 10°C min-1 cooling rate showed large exothermic contributions corresponding to irreversible effects. In addition, a true reversible melting contribution is also detected for both fast-cooled and thermally-fractionated samples during the quasi-isothermal measurements. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The influence of thermal history on morphology, melting, and crystallization behavior of bacterial poly(3‐hydroxybutyrate) (PHB) has been investigated using temperature‐modulated DSC (TMDSC), wide‐angle X‐ray diffraction (WAXRD) and polarized optical microscopy (POM). Various thermal histories were imparted by crystallization with continuous and different modulated cooling programs that involved isoscan and cool–heat segments. The subsequent melting behavior revealed that PHB experienced secondary crystallization during heating and the extent of secondary crystallization varied with the cooling treatment. PHB crystallized under slow, continuous, and moderate cooling rates were found to exhibit double melting behavior due to melting of TMDSC scan‐induced secondary crystals. PHB underwent considerable secondary crystallization/annealing that took place under modulated cooling conditions. The overall melting behavior was interpreted in terms of recrystallization and/or annealing of crystals. Interestingly, the PHB analyzed by temperature modulation programs showed a broad exotherm before the melting peak in the nonreversing heat capacity curve and a multiple melting reversing curve, verifying that the melting–recrystallization and remelting process was operative. WAXRD and POM studies supported the correlations from DSC and TMDSC results. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 70–78, 2006  相似文献   

12.
Atomic force microscopy (AFM), small angle X‐ray scattering (SAXS), temperature modulated differential scanning calorimetry (TMDSC), variable heating rate DSC, an independent rapid heating rate method for melting points, and cyclic mechanical testing were used to study semicrystalline thermoplastic elastomeric polypropylenes (ELPPs) and related semicrystalline polyolefins including ethylene copolymers. Low crystallinity (ca., 9 and 15%) ELPP samples were studied by AFM in the nonoriented and melt‐oriented states. AFM images taken as a function of time after quenching of a melt‐drawn and highly nucleated film resolved details of secondary crystallization involving lateral growth on the ordered row‐nucleated structures. For nonoriented films, isothermal melt crystallization at high temperatures (110 °C) led to similar features for the two ELPPs. The dominant crystalline morphology studied by AFM consisted of small (several nm in width) granular crystallites organized into immature but large spherulites spanning tens of microns. A striking cross‐hatch morphology was detected in regions of the surface in 110 °C crystallized samples, which is contrasted with melt‐drawn films where row nucleated structures dominated the morphology in the film under no external stress. AFM was also used to monitor the morphological changes that occurred as the films were stretched at 25 °C. Break‐down of lamellae was observed, resulting in oriented narrow fibrils. Cyclic stress‐strain curves showed the expected result where lower crystallinity ELPPs had higher recoverable levels of set after both 100 and 500% elongation. TMDSC was used to resolve the broad melting and recrystallization regions in these low to medium crystallinity ELPP systems, and to contrast the results with ethylene copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

13.
The crystallization and melting process of poly(l-lactic acid), PLLA, is investigated by temperature modulated differential scanning calorimetry, TMDSC. The sample is cooled from the melt to different temperatures and the crystallization process is followed by subjecting the material to a modulated quasi-isothermal stage. From the average component of the heat flow and the application of the Lauritzen–Hoffman theory two crystallization regimes are identified with a transition temperature around 118 °C. Besides, the oscillating heat flow allows calculating the crystal growth rate via the model proposed by Toda et al., what gives, in addition, an independent determination of the transition temperature from modulated experiments. Further, the kinetics of melting is studied by modulated heating scans at different frequencies. A strong frequency dependence is found both in the real and imaginary part of the complex heat capacity in the transition region. The kinetic response of the material to the temperature modulation is analyzed with the model proposed by Toda et al. Finally, step-wise quasi-isothermal TMDSC was used to investigate the reversible surface crystallization and melting both on cooling and heating and a small excess heat capacity is observed.  相似文献   

14.
The thermal and crystal morphological properties of poly[ethylene teraphthalate] (PET) and poly(ethylene-2,6-naphthalenedicarboxylate) (PEN) biaxially oriented films were compared to amorphous and other isotropic semi-crystalline samples. Crystal melting as a function of temperature was characterized by temperature modulated DSC (TMDSC) and found to begin just above the glass transition for both oriented films. About 75°C above the glass transitions, substantial exothermic recrystallization begins and continues through the final melting region in oriented films. The maximum in the non-reversing TMDSC signal for the oriented films signifies the maximum recrystallization exothermic activity with peaks at 248°C and 258°C for PET and PEN, respectively. The final melting endotherm detected was 260°C and 270°C for PET and PEN, and is shown by the TMDSC data and by independent rapid heating rate melting point determinations to be due to the melting of species recrystallized during the heating scan. The results are compared with TMDSC data for initially amorphous and melt crystallized samples. The volume fraction of rigid species (Frigid=total crystal fraction plus rigid amorphous or non-crystalline species) were measured by TMDSC glass transition data, and contrasted with the area fraction of rigid species at the oriented film surface characterized with very high resolution atomic force microscopy (AFM) phase data. The data suggest that the 11 nm wide hard domains in PET, and 21 nm wide domains in PEN film detected by AFM consist of both crystal and high stiffness interphase species.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

15.
The phase separation induced by the curing reaction of an epoxy based on diglycidylether of bisphenol A (DGEBA) with methylene dianiline (MDA) modified with poly(ether sulfone) (PES) at a concentration of 20 wt% was studied by temperature modulated differential scanning calorimetry (TMDSC) and dielectric relaxation spectroscopy (DRS). The effect of phase separation on the curing kinetics and vitrification phenomena is analysed. The dependence of the log of the measuring frequency on the degree of conversion allows the correlation between the dipolar relaxation of each phase and the vitrification observed by TMDSC to be established.  相似文献   

16.
The response of temperature-modulated differential scanning calorimetry (TMDSC) to irreversible crystallization of linear polymers was investigated by model calculations and compared to a number of measurements. Four different exotherms were added to a typical modulated, reversible heat-flow rate in order to simulate irreversible crystallization. It was found that the reversing heat-flow rate of the TMDSC in response to such irreversible crystallization exotherms is strongly affected by tbe shape of the transition and the phase-angle where the exotherm occurs. A comparison with the experimental data gave valuable insight into the transitions, as well as the nature of the TMDSC response which is usually limited to an analysis of the first harmonic term of the Fourier series that describes the heat-flow rate.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

17.
The curing reaction of an epoxy system consisting of a diglycidyl ether of bisphenol A (n=0) and 1, 2 diaminecyclohexane (DCH) with an epoxy reactive diluent vinylcyclohexane dioxide was studied by temperature modulated differential scanning calorimetry (TMDSC). The models proposed by Kamal and by Horie et al. were employed in the kinetic study. From these studies reaction orders, rate constants, and activation energies were determined. The technique of TMDSC allows to include in the kinetic study the effect of diffusion by means of the mobility factor, calculated from the curves of the complex heat capacity registered during the curing isothermal experiments. The results were compared to those obtained for the same system employing the reaction rate data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

18.
One important application of temperature modulated DSC (TMDSC) is the measurement of specific heat of materials. In this paper, a thermal resistance/capacitance (R/C) numerical model is used to analyze the effects of experimental parameters and calibration on the measurement of specific heat in TMDSC under isothermal conditions. The actual TMDSC experiments were conducted with sapphire and pure copper samples, respectively. Both simulation and experiments showed that in TMDSC, the measured sample specific heat is a non-linear function of many factors such as sample mass, the heat transfer properties of the TMDSC instrument, temperature modulation period, the heat capacity difference between calibration material and the test material, but modulation amplitude has very little effect on the results. The typical behavior of a heat flux type TMDSC can be described as a low pass filter in terms of specific heat capacity measurement when the instrument heat transfer properties are taken into account. At least for metallic materials, where the temperature gradient inside the sample can normally be ignored, the sample should be chosen in such a way that its total heat capacity (mass times specific heat) is close to that of the calibration material in order to get a more accurate result. Also, a large modulation period is beneficial to improving the test accuracy.  相似文献   

19.
The process of vitrification that occurs during the isothermal cure of a cross-linking system at temperatures below T g∞, the glass transition temperature of the fully cured resin, has been studied by TOPEM, a new temperature modulated DSC (TMDSC) technique based upon the use of stochastic temperature pulses. A comparison is made between TOPEM and another TMDSC technique, and some advantages of TOPEM are considered. The TOPEM technique is used to show that the mobility factor is not always a reliable approach to predicting the cure rate during vitrification, in view of its frequency dependence. Also, the dependence of the apparent vitrification time on frequency is examined. There appears to be a non-linear relationship between the apparent vitrification time and log(frequency), which is further discussed in the second part of this series.  相似文献   

20.
The use of pressure cell attached to a temperature modulated differential scanning calorimeter (TMDSC) is investigated to perform modulated DSC experiments at high pressures (TMPDSC). No previous reports were found on the use of TMPDSC. In this study, the proposed method is applied to the study of the pressure effect on the curing reaction of an epoxy system. Curing quasi-isothermal modulated experiments were performed at different pressures to evaluate the vitrification time. Linear heating modulated tests were also successfully performed at different pressures to separate the reversing glass transition effect from the residual exothermic cure reaction. The curing enthalpy, conversion versus temperature, and glass transition of the fully cured thermoset were also evaluated. All the studied parameters resulted to be affected by the pressure in the range from atmospheric pressure to 35 bar. It was observed that the curing enthalpy, the reaction rate and the conversion at any given time increase with any pressure increment. The usefulness of TMDSC to characterize the curing of thermosets is extended by PTMDSC to situations, i.e., aeronautics industry, where pressure curing is needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号