首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel thermo-responsive diblock copolymer of poly(N-vinyl-2-pyrrolidinone)-block-poly(N-isopropylacrylamide) (PNVP-b-PNIPAM) was synthesized. FT-IR, 1H-NMR and SEC results confirmed the successful synthesis of PNVP-b-PNIPAM diblock copolymer via anionic polymerization. The polymeric micelles formed from PNVP-b-PNIPAM copolymer in aqueous solution were developed and characterized as a potential thermo-responsive and biocompatible drug delivery system. Micellization of the diblock copolymer in aqueous solution was characterized by dynamic laser scattering (DLS), turbidity measurement, tension measurement and transmission electron microscopy (TEM). The thermo-responsive polymeric micelles with the size ranges of 200 to 260 nm and thickness of 30 nm are localized, selected and targeted for drug release, having a great potential in response to external-stimulus such as temperatures from 35 to 39°C. The critical micellization concentration (cmc) of PNVP-b-PNIPAM in aqueous solution is 0.0026 wt% determined by turbidity measurement. The size of micelles determined by DLS increased from 163 to 329 nm with increasing concentration of PNVP-b-PNIPAM from 0.25 to 0.5 wt% in aqueous solution at 40°C, which is determined by DLS.  相似文献   

2.
The self-assembly of amphiphilic copolymers consisting of poly( N, N-dimethylamino-2-ethyl methacrylate) (PDMAEMA) and poly(-caprolactone) (PCL) segments arranged in graft and linear diblock architectures was investigated in this work by means of dynamic light scattering (DLS) in aqueous solution and by atomic force microscopy (AFM) on thin deposits. The solid-state deposits of the micelles were generated by a "freeze-drying" technique that preserves the initial micelle morphology in solution. A comparison between the morphological properties of graft copolymers with corresponding diblock copolymers was established to demonstrate the effect of the copolymer architecture on the micelle structure and organization.  相似文献   

3.
For polymersomes to achieve their potential as effective delivery vehicles, they must efficiently encapsulate therapeutic agents into either the aqueous interior or the hydrophobic membrane. In this study, cell membrane-mimetic polymersomes were prepared from amphiphilic poly(D,L-lactide)-b-poly(2-methacryloyloxyethylphosphorylcholine) (PLA-b-PMPC) diblock copolymers and were used as encapsulation devices for water-soluble molecules. Thioalkylated zwitterionic phosphorylcholine protected quantum dots (PC@QDs) were chosen as hydrophilic model substrates and successfully encapsulated into the aqueous polymersome interior, as evidenced by transmission electron microscopy (TEM) and flow cytometry. In addition, we also found a fraction of the PC@QDs were bound to both the external and internal surfaces of the polymersome. This interesting immobilization might be due to the ion-pair interactions between the phosphorylcholine groups on the PC@QDs and polymersomes. The experimental encapsulation results support a mechanism of PLA-b-PMPC polymersome formation in which PLA-b-PMPC copolymer chains first form spherical micelles, then worm-like micelles, and finally disk-like micelles which close up to form polymersomes.  相似文献   

4.
The phase behavior of a mixture of poly(isoprene)-poly(oxyethylene) diblock copolymer (PI-PEO or C250EO70) and poly(oxyethylene) surfactant (C12EO3, C12EO5, C12EO6, C12EO7, and C12EO9) in water was investigated by phase study, small-angle X-ray scattering, and dynamic light scattering (DLS). The copolymer is not soluble in surfactant micellar cubic (I1), hexagonal (H1), and lamellar (Lalpha) liquid crystals, whereas an isotropic copolymer fluid phase coexists with these liquid crystals. Although the PI-PEO is relatively lipophilic, it increases the cloud temperatures of C12EO3-9 aqueous solutions at a relatively high PI-PEO content in the mixture. Most probably, in the copolymer-rich region, PI-PEO and C12EOn form a spherical composite micelle in which surfactant molecules are located at the interface and the PI chains form an oil pool inside. In the C12EO5/ and C12EO6/PI-PEO systems, one kind of micelles is produced in the wide range of mixing fraction, although macroscopic phase separation was observed within a few days after the sample preparation. On the other hand, small surfactant micelles coexist with copolymer giant micelles in C12EO7/ and C12EO9/PI-PEO aqueous solutions in the surfactant-rich region. The micellar shape and size are calculated using simple geometrical relations and compared with DLS data. Consequently, a large PI-PEO molecule is not soluble in surfactant bilayers (Lalpha phase), infinitely long rod micelles (H1 phase), and spherical micelles (I1 phase or hydrophilic spherical micelles) as a result of the packing constraint of the large PI chain. However, the copolymer is soluble in surfactant rod micelles (C12EO5 and C12EO6) because a rod-sphere transition of the surfactant micelles takes place and the long PI chains are incorporated inside the large spherical micelles.  相似文献   

5.
A supramolecular AB diblock copolymer has been prepared by the sequential self-assembly of terpyridine end-functionalized polymer blocks by using Ru(III)/Ru(II) chemistry. By this synthetic strategy a hydrophobic poly(ferrocenylsilane) (PFS) was attached to a hydrophilic poly(ethylene oxide) (PEO) block to give an amphiphilic metallo-supramolecular diblock copolymer (PEO/PFS block ratio 6:1). This compound was used to form micelles in water that were characterized by a combination of dynamic and static light scattering, transmission electron microscopy, and atomic force microscopy. These complementary techniques showed that the copolymers investigated form rod-like micelles in water; the micelles have a constant diameter but are rather polydisperse in length, and light scattering measurements indicate that they are flexible. Crystallization of the PFS in these micelles was observed by differential scanning calorimetry, and is thought to be the key behind the formation of rod-like structures. The cylindrical micelles can be cleaved into smaller rods whenever the temperature of the solution is increased or they are exposed to ultrasound.  相似文献   

6.
嵌段结构对两亲嵌段共聚物水溶液行为的影响   总被引:2,自引:1,他引:2  
在合成了二种具有相同组成不同嵌段结构排布的共聚物基础上对它们溶液的物理化学行为用荧光探针的方法进行了研究,结果表明:由于结构排布的不同其物理化学行为有着较大的差异,三嵌段结构的共聚物较二嵌段者更易于形成胶束体系,而二嵌段共聚物则易于发生凝胶化,对上述结果进行讨论和解释.  相似文献   

7.
A block copolymer of hydrophilic poly(ethylene oxide) and a hydrophobic poly(alkylene oxide) can associate in dilute aqueous solution to form micelles. The results of recent investigations of the micellisation behaviour and micelle properties of such copolymers are described. Copolymers of ethylene oxide with propylene oxide, 1,2‐butylene oxide or styrene oxide are considered, including aspects of their preparation. Experimental methods for determination of critical conditions for micellisation, micelle association number and spherical‐micelle radius are summarised. Effects of temperature, composition, block length and block architecture (diblock, triblock and cyclic‐diblock) are described and, where possible, related to the predictions of theory. Brief consideration is given to the dynamics of micelle formation/dissociation, to cylindrical micelles, and to effects of added salts.  相似文献   

8.
AB block copolymers composed of hydrophilic poly(ethylene glycol) (PEG) and hydrophobic poly(amino acid) with a carboxyl group at the end of PEG were synthesized with α‐carboxylic sodium‐ω‐amino‐PEG as a macroinitiator for the ring‐opening polymerization of N‐carboxy anhydride. Characterizations by 1H NMR, IR, and gel permeation chromatography were carried out to confirm that the diblock copolymers were formed. In aqueous media this copolymer formed self‐associated polymer micelles that have a carboxyl group on the surface. The carboxyl groups located at the outer shell of the polymeric micelle were expected to combine with ligands to target specific cell populations. The diameter of the polymer micelles was in the range of 30–80 nm. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3527–3536, 2004  相似文献   

9.
The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix. In addition, for the first time, ASAXS revealed the organization of Pt-nanoparticle-filled diblock and triblock copolymers in the bulk. The nanoparticle characteristics are mainly determined by the type of block copolymer system in which they are found: larger particles (2.0-3.0 nm) are formed in triblock copolymer micelles, while smaller ones (1.5-2.5 nm) are found in diblock copolymer micelles. This can be explained by facilitated intermicellar exchange in triblock copolymer systems. For both systems, Pt nanoparticles have narrow particle size distributions as a result of a strong interaction between the nanoparticle surface and the P4VP units inside the micelle cores. The pH of the medium mainly influences the particle location rather than the particle size. A structural model of Pt-nanoparticle clustering in the diblock PEO-b-P4VP and triblock P4VP-b-PEO-b-P4VP copolymers in the bulk was constructed ab initio from the ASAXS data. This model reveals that nearly spherical micellar cores of about 10 nm in diameter (filled with Pt nanoparticles) aggregate forming slightly oblate hollow bodies with an outer diameter of about 40 nm.  相似文献   

10.
We used two-dimensional column chromatography to analyze the composition of a sample of presumably a diblock copolymer of poly(ethylene glycol) (PEG) and poly(L-lactide) synthesized from monomethoxy-terminated PEG. The first dimension of the separation is phase fluctuation chromatography to prepare fractions that contain various components of the copolymer in different ratios. The second dimension is size-exclusion chromatography, NMR, and HPLC at the critical condition of PEG. The PEG initiator has small amounts of diol-terminated dimeric components. We found that the copolymer sample contains a triblock copolymer and low-molecular-mass components in addition to the main part of the diblock copolymer. The SEC chromatograms show that the main part consists of two components with distinct peak lengths for the PLLA block. The low-molecular-mass components have a broad distribution in chemical composition. Phase fluctuation chromatography enriched the triblock copolymer and the diblock copolymer with the longer PLLA block in early fractions when the column was packed with carboxymethyl-modified porous silica. When the porous medium was PLLA-grafted silica, size exclusion dominated, but the low-molecular-mass components were separated according to their chemical composition.  相似文献   

11.
Poly[(L-histidine)-co-(L-phenylalanine)]-block-poly(ethylene glycol) (HF-b-PEG) diblock copolymers were synthesized to be used for preparation of pH-sensitive polymeric micelles. First, HF block was synthesized by ring opening copolymerization of L-histidine and L-phenylalanine N-carboxyanhydride, and then the resulting copolymer was coupled with PEG. The pKa value of diblock copolymer can be controlled by adjusting the histidine/phenylalanine ratio in HF block. It is observed that the block copolymers form micelles in aqueous media and that the micelles are spherical in shape with a unimodal distribution. The micelle is formed at pH higher than pKa of block copolymer while it is not formed at lower pH. This is because the protonation of histidine residue in the HF block converts the hydrophobic core into hydrophilic one at lower pH. Acid-Base titration profile of HF41(5600)-b-PEG, HF56(5500)-b-PEG, H(5100)-b-PEG and 0.1 N NaCl.  相似文献   

12.
Poly(D,L-lactide) (PDLLA) microspheres with narrow diameter distribution were prepared by dispersion polymerization of D,L-lactide in xylene/heptane (1:2, v/v) using poly(dodecyl methacrylate)-g-poly(D,L-lactide) (PDMA-g-PDLLA) as a dispersion stabilizer. The particle diameters of PDLLA microspheres were controlled from 200 nm to 5 μm by altering the concentration and the graft chain number of PDMA-g-PDLLA. The effect of the copolymer composition on the particle diameter was investigated to clarify an important factor of the copolymer structure for the control of the particle diameter. As a result, it was necessary for anchor block in diblock copolymer as a dispersion stabilizer to have low solubility in the solution rather than the compatibility with particles. Moreover, we confirmed by dynamic light scattering measurement that PDMA-g-PDLLA formed micelles in the solution. In conclusion, it was clarified that PDLLA microspheres with a wide range of particle diameter were prepared due to the different kinetic stability of micelles.  相似文献   

13.
Manipulation of diblock copolymer worm micelles by external electric fields is visualized by fluorescence microscopy in dilute, aqueous solution. Hydrodynamic coupling of the poly(acrylic acid)-(1,4)-polybutadiene (PAA-PBD) worm motion to the electric field and the effective stiffening of the worms in an oscillating electric field are demonstrated. A brief discussion on using this technique to estimate the rheological properties of wormlike micelles is presented.  相似文献   

14.
Through the use of the methods of turbidimetry, UV spectrophotometry, fluorescence spectroscopy, dynamic light scattering, and ultracentrifugation, micelle formation is studied for cationic (polysty-rene-poly-N-ethyl-4-vinylpyridium bromide) and anionic (polystyrene-sodium polyacrylate) diblock copolymers containing identical polystyrene blocks in dilute aqueous saline solutions. Mixing of aqueous dispersions of individual micelles is accompanied by the formation of only insoluble products, which likely are intermicellar interpolyelectrolyte complexes. At the same time, mixing of diblock copolymers in a nonselective solvent and its subsequent gradient replacement with water during suppressed interpolyelectrolyte interactions yields mixed diblock copolymer micelles, which are found to be dispersionally stable in an excess of charged units of any polymer component. The micelles are composed of an insoluble polystyrene core and a mixed interpolyelectrolyte corona, and their hydrodynamic characteristics are controlled by the ratio of charged units in the mixed diblock copolymers. The mixed micelles are found to be able to interact with the macromolecules of a homopolyelectrolyte, sodium poly(styrene sulfonate), in aqueous solutions and form ternary complexes. In this case, depending on the composition of the mixed micelles, ternary complexes can be dispersionally stable or can aggregate and precipitate.  相似文献   

15.
利用核磁共振方法研究了AB型双嵌段共聚物(MPEG45-b-PA32)在选择性溶剂中的自组装行为及胶束化过程.嵌段共聚物在三氟乙酸中聚氨基酸和聚乙二醇链段均处于自由运动状态,聚丙氨酸链段为无规线团结构.在向该溶液中逐渐加入氘代水的过程中,聚丙氨酸链段又重新聚集形成规整的二级结构.结合1H-NMR和COSY谱分析,结果显示这一自组装过程伴随着聚(L-丙氨酸)链段由无规线团向α-螺旋结构的构象转变,同时嵌段共聚物逐渐形成核-壳型胶束结构.利用透射电镜观察了所形成胶束的形态,嵌段共聚物主要形成粒径150 nm到220 nm的球形胶束.  相似文献   

16.
A novel micellization induced by photolysis was attained using a poly(4-tert-butoxystyrene)-block-polystyrene diblock copolymer (PBSt-b-PSt). BSt-b-PSt showed no self-assembly in dichloromethane and existed as isolated copolymers. Dynamic light scattering demonstrated that the copolymer produced spherical micelles in dichloromethane by the irradiation with a high-pressure mercury lamp in the presence of photoacid generators, such as bis(alkylphenyl)iodonium hexafluorophosphate (BAI), diphenyliodonium hexafluorophosphate (DPI), and triphenylsulfonium triflate (TPS). The irradiation time to promote the micellization increased in the order of BAI < DPI < TPS, depending on the UV absorption intensity of the photoacid generators. The efficiency to promote the micellization was also dependent on the block length of the copolymer. Under an identical PBSt block length, the copolymer with the shorter PSt block length more easily formed micelles. The 1H NMR analysis confirmed that the PBSt-b-PSt copolymer was converted into poly(4-vinyl phenol)-block-PSt, resulting in micelles by self-assembly.  相似文献   

17.
We report novel micellar carriers, comprising pendant cinnamyl moieties in the core-forming block, designed to increase the solubilization of caffeic acid phenethyl ester (CAPE) in aqueous media. Amphiphilic poly(ethylene oxide)-block-poly(α-cinnamyl-ε-caprolactone-co-ε-caprolactone) (PEO-b-P(CyCL-co-CL) diblock copolymers were synthesized by ring-opening copolymerization of α-propargyl-ε-caprolactone and ε-caprolactone from a monofunctional PEO macroinitiator and subsequent attachment of cinnamyl groups via click reaction. In addition, a linear PEO-b-PCL diblock copolymer was synthesized and used in this study for comparison. Next, nanosized micelles from PEO-b-P(CyCL-co-CL) and PEO-b-PCL were formed via the solvent evaporation method and then loaded with CAPE. Dynamic and electrophoretic light scattering, and transmission electron microscopy were used to characterize both blank and loaded carriers. The potential of the micelles comprising pendant cinnamyl group to solubilize CAPE in water was evaluated in a comparative fashion to that of nonmodified PEO-b-PCL diblock copolymer.  相似文献   

18.
Miktoarm star triblock copolymers mu-[poly(ethylethylene)][poly(ethylene oxide)][poly(perfluoropropylene oxide)] self-assemble in dilute aqueous solution to give multicompartment micelles with the cores consisting of discrete poly(ethylethylene) and poly(perfluoropropylene oxide) domains. Tetrahydrofuran is a selective solvent for both the poly(ethylethylene) and poly(ethylene oxide) blocks, and thus in tetrahydrofuran mixed corona micelles are favored with poly(perfluoropropylene oxide) cores. The introduction of tetrahydrofuran into water induces an evolution from multicompartment micelles to mixed corona [poly(ethylethylene) + poly(ethylene oxide)] micelles, as verified by dynamic light scattering and nuclear magnetic resonance spectroscopy. A mixed solvent containing 60 wt % tetrahydrofuran corresponds to the transition point, as verified by analysis of a poly(ethylethylene)-poly(ethylene oxide) diblock copolymer in the same solvent mixtures. Furthermore, cryogenic transmission electron microscopy suggests that, as the poly(ethylethylene) block transitions from the core to the corona, the micelle morphologies evolve from disks to oblate ellipsoid micelles (with some vesicles), with worms and spheres evident at intermediate compositions.  相似文献   

19.
Well-defined poly(epsilon-caprolactone) (PCL)/poly(N,N-dimethylamino-2-ethyl methacrylate (PDMAEMA) diblock copolymers were synthesized, and their self-assembly was investigated as micelles both in aqueous solutions and in thin solid deposits. The synthetic approach combines controlled ring opening polymerization (ROP) of epsilon-caprolactone (CL) and atom transfer radical polymerization (ATRP) of N,N-dimethylamino-2-ethyl methacrylate (DMAEMA). Diblock copolymers were prepared by ROP of CL initiated by (Al(OiPr)3), followed by quantitative reaction of the PCL hydroxy end-groups with bromoisobutyryl bromide. The alpha-isopropyloxy omega-2-bromoisobutyrate poly(epsilon-caprolactone) (PCL-Br) obtained was used as a macroinitiator for the ATRP of DMAEMA. The molecular characterization of those diblock copolymers was performed by 1H NMR spectroscopy and gel permeation chromatography (GPC) analysis. The self-assembly of the copolymers into micellar aggregates in aqueous media was followed with dynamic light scattering (DLS), as a function of concentration and the pH. In parallel, the morphology of the solid deposits of those micelles was examined with atomic force microscopy (AFM).  相似文献   

20.
Summary: A poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymer was synthesized through the polymerization of β‐benzyl‐L ‐aspartate‐N‐carboxyanhydride [Asp(OBzl)‐NCA] with amino‐terminating polylactide (NH2‐PLA) as a macroinitiator. The chain length of the PAsp segment could be easily controlled by changing the monomer/initiator ratio. Dynamic light scattering measurements of PAsp‐block‐PLA aqueous solutions revealed the formation of polymeric micelles. Changes in the micelles as a function of pH were investigated.

The structure and formation of micelles of the poly(aspartic acid)‐block‐polylactide (PAsp‐block‐PLA) diblock copolymers synthesized here.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号