共查询到20条相似文献,搜索用时 15 毫秒
1.
Spin Polarization and Andreev Conductance through a Diluted Magnetic Semiconductor Quantum Wire with Spin--Orbit Interaction 下载免费PDF全文
Spin-dependent Andreev reflection and spin polarization through a diluted magnetic semiconductor quantum wire coupled to normal metallic and superconductor electrodes are investigated using scattering theory. When the spin-orbit coupling is considered, more Andreev conductance steps appear at the same Fermi energy. Magnetic semiconductor quantum wire separates the spin-up and spin-down electrons. The Fermi energy, at which different- spin-state electrons begin to separate, becomes lower due to the effect of the spin-orbit interaction. The spin filter effect can be measured more easily by investigating the Andreev conductance than by investigating the normal conductance. 相似文献
2.
Persistent Spin and Charge Currents in Open Conducting Ring Subjected to Rashba Spin--Orbit Coupling 下载免费PDF全文
We investigate persistent charge and spin currents of a one-dimensional ring with Rashba spin-orbit coupling and connected asymmetrically to two external leads spanned with angle φo. Because of the asymmetry of the structure and the spin-reflection, the persistent charge and spin currents can be induced. The magnification of persistent currents can be obtained when tuning the energy of incident electron to the sharp zero and sharp resonance of transmission depending on the Aharonov-Casher (AC) phase due to the spin-orbit coupling and the angle spanned by two leads φo. The general dependence of the charge and spin persistent currents on these parameters is obtained. This suggests a possible method of controlling the magnitude and direction of persistent currents by tuning the AC phase and φo, without the electromagnetic flux though the ring. 相似文献
3.
A Gaussian type spin-polarized electronic wave packet is constructed to investigate the spin transport behaviour in an infinite two-dimensional electron gas system with Rashba spin--orbit (SO) interaction by solving the Schrödinger equation exactly. In the presence of Rashba SO interaction, the spin-dependent force induces a momentum dependent splitting of the two spin directions, the average spin current indicates the corresponding spin accumulation clearly. Furthermore, the coherence of the injected spin-polarized wave packet, as well as the transverse force, decays during the motion in the Rashba SO regime. 相似文献
4.
We propose a spin filter based on both the quantum interference and the Rashba spin-orbit (RSO) effects. This spin filter consists of a Aharonov-Bohm (AB) interferometer with two quantum dots (QDs) inserted in its arms. The influences of a magnetic flux φ threading through the AB ring and the RSO interaction inside the two QDs are taken into account by using the nonequilibrium Green's function technique. Due to the existence of the RSO interaction, the electrons flowing through different arms of the ring will acquire a spin-dependent phase factor in the linewidth matrix elements. This phase factor, combined with the influence of the magnetic flux, will induce a spin-dependent electron transport through the device. Moreover, we show that by tuning the magnetic flux, the RSO strength and the inter-dot tunnelling coupling strength, a pure spin-up or spin-down conductance can be obtained when a spin-unpolarized current is injected from the external leads, which can be used to filter the electron spin. 相似文献
5.
The transport properties of the Datta and Das's spin transistor with the center normal region (or the quantum dot) having Rashba spin–orbit interaction and electron–electron (e–e) interaction U are investigated. We find while intra-dot level is near or above the chemical potential of the leads, the modulation efficiency of this spin transistor almost is not influenced by U. On the other hand, when the level is below the chemical potential, e–e interaction U may affect the modulator efficiency, because in this case the existence of e–e interaction can change the transport properties of the quantum dot. But the modulation efficiency still keep enough large and the spin transistor can effectively work. 相似文献
6.
We report the magnetoresistance of two-dimensional electron gas, which is made of GaAs based epitaxial mul-tilayers and laterally subjected to a periodic magnetic field. The modulation field is produced by an array of submicrometre ferromagnets fabricated at the surface of the heterostructure. The magnetoresistance of about 20% is found at low temperature 80K. The measurement is in quantitative agreement with semiclassical simulations, which reveal that the magnetoresistance is due to electrons trapped in snake orbits along lines of zero magnetic field. 相似文献
7.
We investigate theoretically the spin-polarized electron transport for a wide-narrow-wide (WNW) quantum wire under the modulation of Rashba spin-orbit interaction (SOI). The influence of both the structure of the quantum wire and the interference between different pairs of subbands on the spin-polarized electron transport is taken into account simultaneously via the spin-resolved lattice Green function method. It is found that a very large vertical spin-polarized current can be generated by the SOI-induced effective magnetic field at the structure-induced Fano resonance even in the presence of strong disorder. Furthermore, the magnitude of the spin polarization can be tuned by the Rashba SOI strength and structural parameters. Those results may provide an effective way to design a spin filter device without containing any magnetic materials or applying a magnetic field. 相似文献
8.
9.
A. John Peter 《Physics letters. A》2008,372(31):5239-5242
The spin dependent electron transmission through a non-magnetic III-V semiconductor symmetric well is studied theoretically so as to investigate the output transmission current polarization at zero magnetic field. Transparency of electron transmission is calculated as a function of electron energy as well as the well width, within the one electron band approximation along with the spin-orbit interaction. Enhanced spin-polarized resonant tunneling in the heterostructure due to Dresselhaus and Rashba spin-orbit coupling induced splitting of the resonant level is observed. We predict that a spin-polarized current spontaneously emerges in this heterostructure. This effect could be employed in the fabrication of spin filters, spin injectors and detectors based on non-magnetic semiconductors. 相似文献
10.
Michael Schulz 《Physics letters. A》2008,372(37):5905-5908
The spin polarized charge transport is systematically analyzed as a thermally driven stochastic process. The approach is based on Kramers' equation describing the semiclassical motion under the inclusion of stochastic and damping forces. Due to the relativistic spin-orbit coupling the damping experiences a relativistic correction leading to an additional contribution within the spin Hall conductivity. A further contribution to the conductivity is originated from the averaged underlying crystal potential, the mean value of which depends significantly on the electric field. We derive an exact expression for the electrical conductivity. All corrections are estimated in lowest order of a relativistic approach and in the linear response regime. 相似文献
11.
We investigate the shot noise of electron transport through an Aharonov-Casher ring subject to the Rashba spin-orbit coupling (SOC). Analytic expressions for the coefficients of reflection and transmission are derived by using the Griffith boundary conditions. For this kind of SOC, the ballistic transport of electrons can be analyzed as two independent spin channels, and both of them have the same transmission and reflection coefficients. The dependences of shot noise and Landauer-Biittiker conductance on controllable factors, including the strength of Rashba SOC, the asymmetrical angle of lead-connection positions, the radius of the rings, and the wave vector (or energy) of the incident Fermi electrons, are explicitly described by some new combined parameters. The ways that the shot noise and conductance vary with Rashba SOC and with asymmetrical angle are demonstrated by numerical simulations, respectively. It is revealed that the shot noise reaches its maximum for the particular situation of half transmission and half reflection and zero shot noise occurs at conductance maxima. 相似文献
12.
A method for simulating ballistic time-dependent device transport, which solves the time-dependent Sehrǒdinger equation using the finite difference time domain (FDTD) method together with Poisson's equation, is described in detail. The effective mass Schrǒdinger equation is solved. The continuous energy spectrum of the system is discretized using adaptive mesh, resulting in energy levels that sample the density-of-states. By calculating time evolution of wavefunctions at sampled energies, time-dependent transport characteristics such as current and charge density distributions are obtained. Simulation results in a nanowire and a coaxially gated carbon nanotube field-effect transistor (CNTFET) are presented. Transient effects, e.g., finite rising time, are investigated in these devices. 相似文献
13.
We investigate the transport properties of T-shaped junctions composed of armchair graphene nanoribbons of different widths. Three types of junction geometries are considered. The junction conductance strongly depends on the atomic features of the junction geometry. When the shoulders of the junction have zigzag type edges, sharp conductance resonances usually appear in the low energy region around the Dirac point, and a conductance gap emerges. When the shoulders of the junction have armchair type edges, the conductance resonance behavior is weakened significantly, and the metal-metal-metal junction structures show semimetallic behaviors. The contact resistance also changes notably due to the various interface geometries of the junction. 相似文献
14.
We report a theoretical study of the equilibrium spin current flowing in a quantum dot system. Two electrodes are the two-dimensional electron gas with Rashba or Dresselhaus spin-orbital interaction. By using the Keldysh Green's function technique, we demonstrated that a nonzero spin current can flow in the system without bias. At the weak coupling between electrodes and the quantum dot, the spin current is approximately proportional to the cross product of two average pseudo-magnetizations in two electrodes, which agrees with the result of the linear response theory; whereas at the opposite case, the strong coupling between the quantum dot and electrodes can lead to a non-sinusoidal behavior of the equilibrium spin current. These behaviors of the equilibrium spin current are similar to the Josephson current. 相似文献
15.
Spin splitting of the Aly Ga1-y As/GaAs/A1x Ga1-x As/A1-y Ga1-y As (x ≠ y) step quantum wells ( Q Ws) has been theoretically investigated with a model that includes both the interface and the external electric field contribution. The overall spin splitting is mainly determined by the interface contribution, which can be well manipulated by the external electric field. In the absence of the electric field, the Rashba effect exists due to the internal structure inversion asymmetry (SIA). The electric field can strengthen or suppress the internal SIA, resulting in an increase or decrease of the spin splitting. The step QW, which results in large spin splitting, has advantages in applications to spintronic devices compared with symmetrical and asymmetrical QWs. Due to the special structure design, the spin splitting does not change with the external electric field. 相似文献
16.
We study the spin-polarized current through a vertical double quantum dot scheme. Both the Rashba spin–orbit (RSO) interaction inside one of the quantum dots and the strong intradot Coulomb interactions on the two dots are taken into account by using the second-quantized form of the Hamiltonian. Due to the existence of the RSO interaction, spin-up and spin-down electrons couple to the external leads with different strengths, and then a spin polarized current can be driven out of the middle lead by controlling a set of structure parameters and the external bias voltage. Moreover, by properly adjusting the dot levels and the external bias voltages, a pure spin current with no accompanying charge current can be generated in the weak coupling regime. We show that the difference between the intradot Coulomb interactions strongly influences the spin-polarized currents flowing through the middle lead and is undesirable in the generation of the net spin current. Based on the RSO interaction, the structure we propose can efficiently polarize the electron spin without the usage of any magnetic field or ferromagnetic material. This device can be used as a spin-battery and is realizable using the present available technologies. 相似文献
17.
We investigate Andreev reflection (AR) tunneling through a ferromagnet-quantum dot-superconductor (F-QD-S) system in the presence of an external ac field. The intradot spin-flip scattering in the QD is involved. Using the nonequilibrium Green function and BCS quasiparticle spectrum for superconductor, time-averaged AR conductance is formulated. The competition between the intradot spin-flip scattering and photon-assisted tunneling dominates the resonant behaviors of the time-averaged AR conductance. For weak intradot spin-flip scattering strengths, the AR conductance shows a series of equal interval resonant levels. However, the single-peak at main resonant level develops into a well-resolved double-peak resonance at a strong intradot spin-flip scattering strength. Remarkable, multiple-photon-assisted tunneling that generates photonic sideband peaks with a variable interval has been found. In addition, the AR conductance-bias voltage characteristic shows a transition between the single-peak to double-peak resonance as the ratio of the two tunneling strengths varies. 相似文献
18.
The quasiclassical Green function formalism is used to describe charge and spin dynamics in the presence of spin-orbit coupling. We review the results obtained for the spin Hall effect on restricted geometries. The role of boundaries is discussed in the framework of spin diffusion equations. 相似文献
19.
Effect of Electric Field on Spin Polarized Current in Ferromagnetic/Organic Semiconductor Systems 下载免费PDF全文
Considering the special carriers in organic semiconductors, the spin polarized current under electric field in a ferromagnetic/organic semiconductor system is theoretically studied. Based on the spin-diffusion theory, the current spin polarization under the electric field is obtained. It is found that electric field can enhance the current spin polarization. 相似文献
20.
Based on the nonequilibrium Green' function method, the spin-dependent Fano effect through parallel-coupled double quantum dots has been investigated by taking account of both Rashba spin-orbit interaction and intradot Coulomb interaction. It is shown that the quantum interference through the bonding, antibonding states and through their Coulomb blockade counterparts may result in two Breit-Wigner resonances and two Fano resonances in the conductance spectra. Moreover, the Fano lineshape of the two spin components can be modulated by Rashba spin-orbit interaction when the magnetic flux is switched on. 相似文献