首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Let $(Q(k):k\ge 0)$ be an $M/M/1$ queue with traffic intensity $\rho \in (0,1).$ Consider the quantity $$\begin{aligned} S_{n}(p)=\frac{1}{n}\sum _{j=1}^{n}Q\left( j\right) ^{p} \end{aligned}$$ for any $p>0.$ The ergodic theorem yields that $S_{n}(p) \rightarrow \mu (p) :=E[Q(\infty )^{p}]$ , where $Q(\infty )$ is geometrically distributed with mean $\rho /(1-\rho ).$ It is known that one can explicitly characterize $I(\varepsilon )>0$ such that $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n}\log P\big (S_{n}(p)<\mu \left( p\right) -\varepsilon \big ) =-I\left( \varepsilon \right) ,\quad \varepsilon >0. \end{aligned}$$ In this paper, we show that the approximation of the right tail asymptotics requires a different logarithm scaling, giving $$\begin{aligned} \lim \limits _{n\rightarrow \infty }\frac{1}{n^{1/(1+p)}}\log P\big (S_{n} (p)>\mu \big (p\big )+\varepsilon \big )=-C\big (p\big ) \varepsilon ^{1/(1+p)}, \end{aligned}$$ where $C(p)>0$ is obtained as the solution of a variational problem. We discuss why this phenomenon—Weibullian right tail asymptotics rather than exponential asymptotics—can be expected to occur in more general queueing systems.  相似文献   

2.
Let ${\Omega \subset \mathbb{R}^{N}}$ be a Lipschitz domain and Γ be a relatively open and non-empty subset of its boundary ${\partial\Omega}$ . We show that the solution to the linear first-order system $$\nabla \zeta = G\zeta, \, \, \zeta|_\Gamma = 0 \quad \quad \quad (1)$$ is unique if ${G \in \textsf{L}^{1}(\Omega; \mathbb{R}^{(N \times N) \times N})}$ and ${\zeta \in \textsf{W}^{1,1}(\Omega; \mathbb{R}^{N})}$ . As a consequence, we prove $$||| \cdot ||| : \textsf{C}_{o}^{\infty}(\Omega, \Gamma; \mathbb{R}^{3}) \rightarrow [0, \infty), \, \, u \mapsto \parallel {\rm sym}(\nabla uP^{-1})\parallel_{\textsf{L}^{2}(\Omega)}$$ to be a norm for ${P \in \textsf{L}^{\infty}(\Omega; \mathbb{R}^{3 \times 3})}$ with Curl ${P \in \textsf{L}^{p}(\Omega; \mathbb{R}^{3 \times 3})}$ , Curl ${P^{-1} \in \textsf{L}^{q}(\Omega; \mathbb{R}^{3 \times 3})}$ for some p, q > 1 with 1/p + 1/q = 1 as well as det ${P \geq c^+ > 0}$ . We also give a new and different proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates: Let ${\Phi \in \textsf{H}^{1}(\Omega; \mathbb{R}^{3})}$ satisfy sym ${(\nabla\Phi^\top\nabla\Psi) = 0}$ for some ${\Psi \in \textsf{W}^{1,\infty}(\Omega; \mathbb{R}^{3}) \cap \textsf{H}^{2}(\Omega; \mathbb{R}^{3})}$ with det ${\nabla\Psi \geq c^+ > 0}$ . Then, there exist a constant translation vector ${a \in \mathbb{R}^{3}}$ and a constant skew-symmetric matrix ${A \in \mathfrak{so}(3)}$ , such that ${\Phi = A\Psi + a}$ .  相似文献   

3.
Let $\Omega\subset{\Bbb R}^N$ be a bounded domain with Lipschitz boundary. We prove in the first part that a realization of the Laplacian with Robin boundary conditions $\frac{\partial u}{\partial \nu}+\beta u=0$ on the boundary $\partial \Omega$ generates a holomorphic $C_0$ -semigroup of angle $\pi/2$ on $C(\overline{\Omega})$ if $0<\beta_0\le \beta\in L^{\infty}(\partial \Omega)$ . With the same assumption on $\Omega$ and assuming that $0\le\beta\in L^{\infty}(\partial \Omega)$ , we show in the second part that one can define a realization of the Laplacian on $C(\overline{\Omega})$ with Wentzell-Robin boundary conditions $\Delta u+\frac{\partial u}{\partial \nu}+\beta u=0$ on the boundary $\partial \Omega$ and this operator generates a $C_0$ -semigroup.  相似文献   

4.
We prove some Liouville type results for stable solutions to the biharmonic problem $\Delta ^2 u= u^q, \,u>0$ in $\mathbb{R }^n$ where $1 < q < \infty $ . For example, for $n \ge 5$ , we show that there are no stable classical solution in $\mathbb{R }^n$ when $\frac{n+4}{n-4} < q \le \left(\frac{n-8}{n}\right)_+^{-1}$ .  相似文献   

5.
Consider the stationary Navier–Stokes equations in an exterior domain $\varOmega \subset \mathbb{R }^3 $ with smooth boundary. For every prescribed constant vector $u_{\infty } \ne 0$ and every external force $f \in \dot{H}_2^{-1} (\varOmega )$ , Leray (J. Math. Pures. Appl., 9:1–82, 1933) constructed a weak solution $u $ with $\nabla u \in L_2 (\varOmega )$ and $u - u_{\infty } \in L_6(\varOmega )$ . Here $\dot{H}^{-1}_2 (\varOmega )$ denotes the dual space of the homogeneous Sobolev space $\dot{H}^1_{2}(\varOmega ) $ . We prove that the weak solution $u$ fulfills the additional regularity property $u- u_{\infty } \in L_4(\varOmega )$ and $u_\infty \cdot \nabla u \in \dot{H}_2^{-1} (\varOmega )$ without any restriction on $f$ except for $f \in \dot{H}_2^{-1} (\varOmega )$ . As a consequence, it turns out that every weak solution necessarily satisfies the generalized energy equality. Moreover, we obtain a sharp a priori estimate and uniqueness result for weak solutions assuming only that $\Vert f\Vert _{\dot{H}^{-1}_2(\varOmega )}$ and $|u_{\infty }|$ are suitably small. Our results give final affirmative answers to open questions left by Leray (J. Math. Pures. Appl., 9:1–82, 1933) about energy equality and uniqueness of weak solutions. Finally we investigate the convergence of weak solutions as $u_{\infty } \rightarrow 0$ in the strong norm topology, while the limiting weak solution exhibits a completely different behavior from that in the case $u_{\infty } \ne 0$ .  相似文献   

6.
We consider biharmonic maps $\phi :(M,g)\rightarrow (N,h)$ from a complete Riemannian manifold into a Riemannian manifold with non-positive sectional curvature. Assume that $ p $ satisfies $ 2\le p <\infty $ . If for such a $ p $ , $\int _M|\tau (\phi )|^{ p }\,\mathrm{d}v_g<\infty $ and $\int _M|\,\mathrm{d}\phi |^2\,\mathrm{d}v_g<\infty ,$ where $\tau (\phi )$ is the tension field of $\phi $ , then we show that $\phi $ is harmonic. For a biharmonic submanifold, we obtain that the above assumption $\int _M|\,\mathrm{d}\phi |^2\,\mathrm{d}v_g<\infty $ is not necessary. These results give affirmative partial answers to the global version of generalized Chen’s conjecture.  相似文献   

7.
Let ${\Phi}$ be a continuous, strictly increasing and concave function on (0, ∞) of critical lower type index ${p_\Phi^- \in(0,\,1]}$ . Let L be an injective operator of type ω having a bounded H functional calculus and satisfying the k-Davies–Gaffney estimates with ${k \in {\mathbb Z}_+}$ . In this paper, the authors first introduce an Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ in terms of the non-tangential L-adapted square function and then establish its molecular characterization. As applications, the authors prove that the generalized Riesz transform ${D_{\gamma}L^{-\delta/(2k)}}$ is bounded from the Orlicz–Hardy space ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz space ${L^{\widetilde{\Phi}}(\mathbb{R}^n)}$ when ${p_\Phi^- \in (0, \frac{n}{n+ \delta - \gamma}]}$ , ${0 < \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the Orlicz–Hardy space ${H^{\widetilde \Phi}(\mathbb{R}^n)}$ when ${p_\Phi^-\in (\frac{n}{n + \delta+ \lfloor \gamma \rfloor- \gamma},\,\frac{n}{n+ \delta- \gamma}]}$ , ${1\le \gamma \le \delta < \infty}$ and ${\delta- \gamma < n (\frac{1}{p_-(L)}-\frac{1}{p_+(L)})}$ , or from ${H^{\Phi}_{L}(\mathbb{R}^n)}$ to the weak Orlicz–Hardy space ${WH^\Phi(\mathbb{R}^n)}$ when ${\gamma = \delta}$ and ${p_\Phi=n/(n + \lfloor \gamma \rfloor)}$ or ${p_\Phi^-=n/(n + \lfloor \gamma \rfloor)}$ with ${p_\Phi^-}$ attainable, where ${\widetilde{\Phi}}$ is an Orlicz function whose inverse function ${\widetilde{\Phi}^{-1}}$ is defined by ${\widetilde{\Phi}^{-1}(t):=\Phi^{-1}(t)t^{\frac{1}{n}(\gamma- \delta)}}$ for all ${t \in (0,\,\infty)}$ , ${p_\Phi}$ denotes the strictly critical lower type index of ${\Phi}$ , ${\lfloor \gamma \rfloor}$ the maximal integer not more than ${\gamma}$ and ${(p_-(L),\,p_+(L))}$ the range of exponents ${p \in[1,\, \infty]}$ for which the semigroup ${\{e^{-tL}\}_{t >0 }}$ is bounded on ${L^p(\mathbb{R}^n)}$ .  相似文献   

8.
We study limit behavior for sums of the form $\frac{1}{|\Lambda_{L|}}\sum_{x\in \Lambda_{L}}u(t,x),$ where the field $\Lambda_L=\left\{x\in {\bf{Z^d}}:|x|\le L\right\}$ is composed of solutions of the parabolic Anderson equation $$u(t,x) = 1 + \kappa \mathop{\int}_{0}^{t} \Delta u(s,x){\rm d}s + \mathop{\int}_{0}^{t}u(s,x)\partial B_{x}(s). $$ The index set is a box in Z d , namely $\Lambda_{L} = \left\{x\in {\bf Z}^{\bf d} : |x| \leq L\right\}$ and L = L(t) is a nondecreasing function $L : [0,\infty)\rightarrow {\bf R}^{+}. $ We identify two critical parameters $\eta(1) < \eta(2)$ such that for $\gamma > \eta(1)$ and L(t) = eγ t , the sums $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ satisfy a law of large numbers, or put another way, they exhibit annealed behavior. For $\gamma > \eta(2)$ and L(t) = eγ t , one has $\sum_{x\in \Lambda_L}u(t,x)$ when properly normalized and centered satisfies a central limit theorem. For subexponential scales, that is when $\lim_{t \rightarrow \infty} \frac{1}{t}\ln L(t) = 0,$ quenched asymptotics occur. That means $\lim_{t\rightarrow \infty}\frac{1}{t}\ln\left (\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)\right) = \gamma(\kappa),$ where $\gamma(\kappa)$ is the almost sure Lyapunov exponent, i.e. $\lim_{t\rightarrow \infty}\frac{1}{t}\ln u(t,x)= \gamma(\kappa).$ We also examine the behavior of $\frac{1}{|\Lambda_L|}\sum_{x\in \Lambda_L}u(t,x)$ for L = e γ t with γ in the transition range $(0,\eta(1))$   相似文献   

9.
In this paper wellposedness is proved for a diagonal quasilinear hyperbolic system containing integral quadratic and Lipschitz continuous terms which prevent from looking for classical solutions in Sobolev spaces. It is the hyperbolic part of the system introduced in [Selvaduray and Fujita Yashima on Atti dell’Accademia delle Scienze di Torino 2011] as a model for air motion in ${\mathbf{R}^3}$ including water phase transitions. Unknown functions are: the densities ρ of dry air, π of water vapor, σ and ν of water in the liquid and solid state, dependent also on the mass m of the droplets or ice particles. Air velocity v and temperature T are assumed to be known. Solutions (ρ, π, σ, ν) lie in ${L^\infty(]0,\tau^*[; W^{1,\infty}(\Omega))^2 \times L^\infty(]0,\tau^*[; W^{1,\infty}(\Omega^+))^2}$ , where ${\Omega^+ = \Omega \times]0, +\infty[,\Omega \subset \mathbf{R}^3}$ is open and bounded, and τ* is sufficiently small; they depend continuously on initial data, temperature and velocities, which are tangent to ${\partial\Omega}$ ; they lie also in ${W^{1,q}(]0,\tau^*[;L^\infty(\Omega))^2 \times\,W^{1,q}(]0,\tau^*[;L^\infty(\Omega^+))^2}$ , where ${q \in [1, \infty]}$ .  相似文献   

10.
By means of Riccati transformation technique, we establish some new oscillation criteria for second-order nonlinear delay difference equation $$\Delta (p_n (\Delta x_n )^\gamma ) + q_n f(x_{n - \sigma } ) = 0,\;\;\;\;n = 0,1,2,...,$$ when $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ . When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} < \infty }$ we present some sufficient conditions which guarantee that, every solution oscillates or converges to zero. When $\sum\limits_{n = 0}^\infty {\left( {\frac{1}{{Pn}}} \right)^{\frac{1}{\gamma }} = \infty }$ holds, our results do not require the nonlinearity to be nondecreasing and are thus applicable to new classes of equations to which most previously known results are not.  相似文献   

11.
Applying the boundedness on weighted Lebesgue spaces of the maximal singular integral operator S * related to the Carleson?CHunt theorem on almost everywhere convergence, we study the boundedness and compactness of pseudodifferential operators a(x, D) with non-regular symbols in ${L^\infty(\mathbb{R}, V(\mathbb{R})), PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ and ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ on the weighted Lebesgue spaces ${L^p(\mathbb{R},w)}$ , with 1?< p <? ?? and ${w\in A_p(\mathbb{R})}$ . The Banach algebras ${L^\infty(\mathbb{R}, V(\mathbb{R}))}$ and ${PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ consist, respectively, of all bounded measurable or piecewise continuous ${V(\mathbb{R})}$ -valued functions on ${\mathbb{R}}$ where ${V(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded total variation, and the Banach algebra ${\Lambda_\gamma(\mathbb{R}, V_d(\mathbb{R}))}$ consists of all Lipschitz ${V_d(\mathbb{R})}$ -valued functions of exponent ${\gamma \in (0,1]}$ on ${\mathbb{R}}$ where ${V_d(\mathbb{R})}$ is the Banach algebra of all functions on ${\mathbb{R}}$ of bounded variation on dyadic shells. Finally, for the Banach algebra ${\mathfrak{A}_{p,w}}$ generated by all pseudodifferential operators a(x, D) with symbols ${a(x, \lambda) \in PC(\overline{\mathbb{R}}, V(\mathbb{R}))}$ on the space ${L^p(\mathbb{R}, w)}$ , we construct a non-commutative Fredholm symbol calculus and give a Fredholm criterion for the operators ${A \in \mathfrak{A}_{p,w}}$ .  相似文献   

12.
In this paper, oscillatory and asymptotic properties of solutions of nonlinear fourth order neutral dynamic equations of the form $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = 0(H)$ and $(r(t)(y(t) + p(t)y(\alpha _1 (t)))^{\Delta ^2 } )^{\Delta ^2 } + q(t)G(y(\alpha _2 (t))) - h(t)H(y(\alpha _3 (t))) = f(t),(NH)$ are studied on a time scale $\mathbb{T}$ under the assumption that $\int\limits_{t_0 }^\infty {\tfrac{t} {{r(t)}}\Delta t = \infty } $ and for various ranges of p(t). In addition, sufficient conditions are obtained for the existence of bounded positive solutions of the equation (NH) by using Krasnosel’skii’s fixed point theorem.  相似文献   

13.
Let (M,g) be an n-dimensional, compact Riemannian manifold and ${P_0(\hbar) = -\hbar{^2} \Delta_g + V(x)}$ be a semiclassical Schrödinger operator with ${\hbar \in (0,\hbar_0]}$ . Let ${E(\hbar) \in [E-o(1),E+o(1)]}$ and ${(\phi_{\hbar})_{\hbar \in (0,\hbar_0]}}$ be a family of L 2-normalized eigenfunctions of ${P_0(\hbar)}$ with ${P_0(\hbar) \phi_{\hbar} = E(\hbar) \phi_{\hbar}}$ . We consider magnetic deformations of ${P_0(\hbar)}$ of the form ${P_u(\hbar) = - \Delta_{\omega_u}(\hbar) + V(x)}$ , where ${\Delta_{\omega_u}(\hbar) = (\hbar d + i \omega_u(x))^*({\hbar}d + i \omega_u(x))}$ . Here, u is a k-dimensional parameter running over ${B^k(\epsilon)}$ (the ball of radius ${\epsilon}$ ), and the family of the magnetic potentials ${(w_u)_{u\in B^k(\epsilon)}}$ satisfies the admissibility condition given in Definition 1.1. This condition implies that kn and is generic under this assumption. Consider the corresponding family of deformations of ${(\phi_{\hbar})_{\hbar \in (0, \hbar_0]}}$ , given by ${(\phi^u_{\hbar})_{\hbar \in(0, \hbar_0]}}$ , where $$\phi_{\hbar}^{(u)}:= {\rm e}^{-it_0 P_u(\hbar)/\hbar}\phi_{\hbar}$$ for ${|t_0|\in (0,\epsilon)}$ ; the latter functions are themselves eigenfunctions of the ${\hbar}$ -elliptic operators ${Q_u(\hbar): ={\rm e}^{-it_0P_u(\hbar)/\hbar} P_0(\hbar) {\rm e}^{it_0 P_u(\hbar)/\hbar}}$ with eigenvalue ${E(\hbar)}$ and ${Q_0(\hbar) = P_{0}(\hbar)}$ . Our main result, Theorem1.2, states that for ${\epsilon >0 }$ small, there are constants ${C_j=C_j(M,V,\omega,\epsilon) > 0}$ with j = 1,2 such that $$C_{1}\leq \int\limits_{\mathcal{B}^k(\epsilon)} |\phi_{\hbar}^{(u)}(x)|^2 \, {\rm d}u \leq C_{2}$$ , uniformly for ${x \in M}$ and ${\hbar \in (0,h_0]}$ . We also give an application to eigenfunction restriction bounds in Theorem 1.3.  相似文献   

14.
Consider the stationary motion of an incompressible Navier–Stokes fluid around a rotating body $ \mathcal{K} = \mathbb{R}^3 \, \backslash \, {\Omega}$ which is also moving in the direction of the axis of rotation. We assume that the translational and angular velocities U, ω are constant and the external force is given by f = div F. Then the motion is described by a variant of the stationary Navier–Stokes equations on the exterior domain Ω for the unknown velocity u and pressure p, with U, ω, F being the data. We first prove the existence of at least one solution (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega)}$ and ${u \in L_3, \infty (\Omega)}$ under the smallness condition on ${|U| + |\omega| + ||F||_{L_{3/2, \infty} (\Omega)}}$ . Then the uniqueness is shown for solutions (u, p) satisfying ${\nabla u, p \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}$ and ${u \in L_{3, \infty} (\Omega) \cap L_{q*, r} (\Omega)}$ provided that 3/2 <? q <? 3 and ${{F \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}}$ . Here L q,r (Ω) denotes the well-known Lorentz space and q* =? 3q /(3 ? q) is the Sobolev exponent to q.  相似文献   

15.
Let $\mathcal P _\lambda $ be a homogeneous Poisson point process of rate $\lambda $ in the Clifford torus $T^2\subset \mathbb E ^4$ . Let $(f_0, f_1, f_2, f_3)$ be the $f$ -vector of conv $\,\mathcal P _\lambda $ and let $\bar{v}$ be the mean valence of a vertex of the convex hull. Asymptotic expressions for $\mathsf E \, f_1$ , $\mathsf E \, f_2$ , $\mathsf E \, f_3$ and $\mathsf E \, \bar{v}$ as $\lambda \rightarrow \infty $ are proved in this paper.  相似文献   

16.
Let $(\lambda ^k_p)_k$ be the usual sequence of min-max eigenvalues for the $p$ -Laplace operator with $p\in (1,\infty )$ and let $(\lambda ^k_1)_k$ be the corresponding sequence of eigenvalues of the 1-Laplace operator. For bounded $\Omega \subseteq \mathbb{R }^n$ with Lipschitz boundary the convergence $\lambda ^k_p\rightarrow \lambda ^k_1$ as $p\rightarrow 1$ is shown for all $k\in \mathbb{N }$ . The proof uses an approximation of $BV(\Omega )$ -functions by $C_0^\infty (\Omega )$ -functions in the sense of strict convergence on $\mathbb{R }^n$ .  相似文献   

17.
In 2012 the authors set out a programme to prove the Duffin–Schaeffer conjecture for measures arbitrarily close to Lebesgue measure. In this paper we take a new step in this direction. Given a non-negative function $\psi : \mathbb N \rightarrow \mathbb R $ , let $W(\psi )$ denote the set of real numbers $x$ such that $|nx -a| < \psi (n) $ for infinitely many reduced rationals $a/n \ (n>0) $ . Our main result is that $W(\psi )$ is of full Lebesgue measure if there exists a $c > 0 $ such that $$\begin{aligned} \sum _{n\ge 16} \, \frac{\varphi (n) \psi (n)}{n \exp (c(\log \log n)(\log \log \log n))} \, = \, \infty \, . \end{aligned}$$   相似文献   

18.
Let ${\nu_{d} : \mathbb{P}^{r} \rightarrow \mathbb{P}^{N}, N := \left( \begin{array}{ll} r + d \\ \,\,\,\,\,\, r \end{array} \right)- 1,}$ denote the degree d Veronese embedding of ${\mathbb{P}^{r}}$ . For any ${P\, \in \, \mathbb{P}^{N}}$ , the symmetric tensor rank sr(P) is the minimal cardinality of a set ${\mathcal{S} \subset \nu_{d}(\mathbb{P}^{r})}$ spanning P. Let ${\mathcal{S}(P)}$ be the set of all ${A \subset \mathbb{P}^{r}}$ such that ${\nu_{d}(A)}$ computes sr(P). Here we classify all ${P \,\in\, \mathbb{P}^{n}}$ such that sr(P) <  3d/2 and sr(P) is computed by at least two subsets of ${\nu_{d}(\mathbb{P}^{r})}$ . For such tensors ${P\, \in\, \mathbb{P}^{N}}$ , we prove that ${\mathcal{S}(P)}$ has no isolated points.  相似文献   

19.
Given a function $\mathbb{L}_2 $ (?), its Fourier transform $g(x) = \hat f(x) = F[f](x) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {f(x)e^{ - ixt} dt} ,f(t) = F^{ - 1} [g](t) = \frac{1} {{\sqrt {2\pi } }}\int\limits_{ - \infty }^{ + \infty } {g(x)e^{ - ixt} dx} $ and the inverse Fourier transform are considered in the space f ε $\mathbb{L}_2 $ (?). New estimates are presented for the integral $\int\limits_{|t| \geqslant N} {|g(t)|^2 dt} = \int\limits_{|t| \geqslant N} {|\hat f(t)|^2 dt} ,N \geqslant 1,$ in the vase of f ε $\mathbb{L}_2 $ (?) characterized by the generalized modulus of continuity of the kth order constructed with the help of the Steklov function. Some other estimates associated with this integral are proved.  相似文献   

20.
Starting from two Lagrangian immersions and a Legendre curve ${\tilde{\gamma}(t)}$ in ${\mathbb{S}^3(1)}$ $({\rm or\,in}\,{\mathbb{H}_1^3(-1)})$ , it is possible to construct a new Lagrangian immersion in ${\mathbb{CP}^n(4)}$ $({\rm or\,in}\,{\mathbb{CH}^n(-4)})$ , which is called a warped product Lagrangian immersion. When ${\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i(- \frac{r_1}{r_2}at)})}$ $({\rm or}\,{\tilde{\gamma}(t)=(r_1e^{i(\frac{r_2}{r_1}at)}, \;r_2e^{i( \frac{r_1}{r_2}at)})})$ , where r 1, r 2, and a are positive constants with ${r_1^2+r_2^2=1}$ $({\rm or}\,{-r_1^2+r_2^2=-1})$ , we call the new Lagrangian immersion a Calabi product Lagrangian immersion. In this paper, we study the inverse problem: how to determine from the properties of the second fundamental form whether a given Lagrangian immersion of ${\mathbb{CP}^n(4)}$ or ${\mathbb{CH}^n(-4)}$ is a Calabi product Lagrangian immersion. When the Calabi product is minimal, or is Hamiltonian minimal, or has parallel second fundamental form, we give some further characterizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号