首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The direct numerical simulation(DNS) of heat transfer in a fully developed non-isothermal particle-laden turbulent channel flow is performed.The focus of this paper is on the modulation of the particles on turbulent thermal statistics in the particle-laden flow with three Prandtl numbers(P r = 0.71,1.5,and 3.0) and a shear Reynolds number(Reτ = 180).Some typical thermal statistics,including normalized mean temperature and their fluctuations,turbulent heat fluxes,Nusselt number and so on,are analyzed.The results show that the particles have less effects on turbulent thermal fields with the increase of Prandtl number.Two reasons can explain this.First,the correlation between fluid thermal field and velocity field decreases as the Prandtl number increases,and the modulation of turbulent velocity field induced by the particles has less influence on the turbulent thermal field.Second,the heat exchange between turbulence and particles decreases for the particle-laden flow with the larger Prandtl number,and the thermal feedback of the particles to turbulence becomes weak.  相似文献   

2.
The present study reports measurements of a turbulent boundary layer in an open-channel flow using fiber-optic laser Doppler anemometry. The Reynolds numbers based on momentum thickness and depth of flow are in the range 750≤Re θ ≤2,400 and 15,300≤Re h ≤54,200, respectively. It is shown that an accurate estimate of the wall shear stress can be made by fitting a fifth-order polynomial to the near-wall data. The effect of Reynolds number on the mean turbulence intensity and triple correlation is examined using both conventional scaling laws and the recent scaling laws proposed by George and Castillo. The present results show that different scaling laws lead to different conclusions on low Reynolds number effects.  相似文献   

3.
Fully resolved direct numerical simulations (DNSs) have been performed with a high-order spectral element method to study the flow of an incompressible viscous fluid in a smooth circular pipe of radius R and axial length 25R in the turbulent flow regime at four different friction Reynolds numbers Re τ ?=?180, 360, 550 and $1\text{,}000$ . The new set of data is put into perspective with other simulation data sets, obtained in pipe, channel and boundary layer geometry. In particular, differences between different pipe DNS are highlighted. It turns out that the pressure is the variable which differs the most between pipes, channels and boundary layers, leading to significantly different mean and pressure fluctuations, potentially linked to a stronger wake region. In the buffer layer, the variation with Reynolds number of the inner peak of axial velocity fluctuation intensity is similar between channel and boundary layer flows, but lower for the pipe, while the inner peak of the pressure fluctuations show negligible differences between pipe and channel flows but is clearly lower than that for the boundary layer, which is the same behaviour as for the fluctuating wall shear stress. Finally, turbulent kinetic energy budgets are almost indistinguishable between the canonical flows close to the wall (up to y ?+??≈?100), while substantial differences are observed in production and dissipation in the outer layer. A clear Reynolds number dependency is documented for the three flow configurations.  相似文献   

4.
The article reports on blending of the Leray-α regularization with the conventional Smagorinsky subgrid-scale closure as an option for large-eddy-simulation of turbulent flows at very high Reynolds number on coarse meshes. The model has been tested in the self-similar far-field region of a jet at a range of Reynolds numbers spanning over two decades (4×103, 4×104 and 4×105) on two very coarse meshes of 2×105 and 3×104 mesh cells. The results are compared with the well-resolved DNS for $Re_D=4\times 10^3$ on 15 million cells and experimental data for higher Re numbers. While the pure Leray-α can fail badly at high Re numbers on very coarse meshes, a blending of the two strategies by adding a small amount of extra-dissipation performs well even at a huge jet Reynolds number of $Re_D=4\times 10^5$ on a very coarse mesh (2×105 cells), despite the ratio of the typical mesh spacing to the Kolmogorov length exceeding 300. It is found that the main prerequisite for successful LES, both for the classic Smagorinsky and the blended Leray-α/Smagorinsky model, is to resolve the shear-length $L_s=\sqrt{\varepsilon/{\cal S}^3}$ (where ${\cal S}$ is the shear-rate modulus), defined by the constraint Δ/L s ?<?1, where Δ is the typical mesh-cell size. For the mixed Leray-α/Smagorinsky model the regularization parameter should also be related to the shear-length rather than the local mesh size or Reynolds number, for which we propose a guide criterion α?=?0.15÷0.3 L s .  相似文献   

5.
This study discusses the application of Taguchi method in assessing maximum heat transfer rate for the turbulent mixed convection in an enclosure embedded with rotating isothermal cylinder. The simulations were planned based on Taguchi’s L16 orthogonal array with each trial performed under different conditions of position of the cylinder, Reynolds number (Re) and Rayleigh number (Ra). The thermal lattice Boltzmann based on D3Q19 methods without any turbulent submodels was purposed to simulate the flow and thermal fields. A relaxation time method with the stability constants is introduced to solve turbulent natural convection problems. Signal-to-noise ratios (S/N) analysis were carried out in order to determine the effects of process parameters and optimal factor settings. Finally, confirmation tests verified that Taguchi method achieved optimization of heat transfer rate with sufficient accuracy.  相似文献   

6.
Three-component, coincident, time-resolved velocity measurements were obtained in the near wall region, y + < 100, of a fully developed turbulent pipe flow. The measurements were conducted in the ARL/PSU glycerin tunnel at a Reynolds number (Re h), based on pipe radius and centerline velocity, of 6436 and an Re of approximately 730. The reported data include velocity statistics up to fourth order, Reynolds stresses and three component, coincident turbulent velocity spectral estimates. The current data are generally in quite good agreement with the fully developed channel flow direct numerical simulation (DNS) results of Antonia et al. (1992) at Re 700 - 700. The accuracy of the current experimental data and the very good agreement with the DNS results provides evidence for the accuracy of the DNS solutions and thus Antonia's conclusions of very near wall, y + < 20, Re dependence on turbulent velocity statistics. The very good agreement between the low Re rectangular channel flow DNS results and the low Re flat plate turbulent boundary layer statistics of Karlsson and Johansson (1988) suggests that for y + < 30 statistics of similar flows of differing geometry may be compared on the basis of equal Re . The current data are available on disk or by anonymous ftp by the first author.  相似文献   

7.
We present an empirical but simple and practical spectral chart method for determining the mean turbulent kinetic energy dissipation rate $ \left\langle \varepsilon \right\rangle $ in a variety of turbulent flows. The method relies on the validity of the first similarity hypothesis of Kolmogorov (C R (Doklady) Acad Sci R R SS, NS 30:301–305, 1941) (or K41) which implies that spectra of velocity fluctuations scale on the kinematic viscosity ν and $ \left\langle \varepsilon \right\rangle $ at large Reynolds numbers. However, the evidence, based on the DNS spectra, points to this scaling being also valid at small Reynolds numbers, provided effects due to inhomogeneities in the flow are negligible. The methods avoid the difficulty associated with estimating time or spatial derivatives of the velocity fluctuations. It also avoids using the second hypothesis of K41, which implies the existence of a ?5/3 inertial subrange only when the Taylor microscale Reynods number R λ is sufficiently large. The method is in fact applied to the lower wavenumber end of the dissipative range thus avoiding most of the problems due to inadequate spatial resolution of the velocity sensors and noise associated with the higher wavenumber end of this range.The use of spectral data (30?≤?R λ?≤?400) in both passive and active grid turbulence, a turbulent mixing layer and the turbulent wake of a circular cylinder indicates that the method is robust and should lead to reliable estimates of $ \left\langle \varepsilon \right\rangle $ in flows or flow regions where the first similarity hypothesis should hold; this would exclude, for example, the region near a wall.  相似文献   

8.
A systematic study of the rheological properties of solutions of non-motile microalgae (Chlorella vulgaris CCAP 211-19) in a wide range of volume fractions is presented. As the volume fraction is gradually increased, several rheological regimes are observed. At low volume fractions (but yet beyond the Einstein diluted limit), the suspensions display a Newtonian rheological behaviour and the volume fraction dependence of the viscosity can be well described by the Quemada model (Quemada, Eur Phys J Appl Phys 1:119–127, 1997). For intermediate values of the volume fraction, a shear thinning behaviour is observed and the volume fraction dependence of the viscosity can be described by the Simha model (Simha, J Appl Phys 23:1020–1024, 1952). For the largest values of the volume fraction investigated, an apparent yield stress behaviour is observed. Increasing and decreasing stress ramps within this range of volume fractions indicate a thixotropic behaviour as well. The rheological behaviour observed within the high concentration regime bears similarities with the measurements performed by Heymann and Aksel (Phys Rev E 75:021505, 2007) on polymethyl methacrylate suspensions: irreversible flow behaviour (upon increasing/decreasing stresses) and dependence of the flow curve on the characteristic time of forcing (the averaging time per stress values). All these findings indicate a behaviour of the microalgae suspensions similar to that of suspensions of rigid particles. A deeper insight into the physical mechanisms underlying the shear thinning and the apparent yield stress regime is obtained by an in situ analysis of the microscopic flow of the suspension under shear. The shear thinning regime is associated to the formation of cell aggregates (flocs). Based on the Voronoi analysis of the correlation between the cell distribution and cell sizes, we suggest that the repulsive electrostatic interactions are responsible for this microscale organisation. The apparent yield stress regime originates in the formation of large-scale cell aggregates which behave as rigid plugs leading to a maximally random jammed state.  相似文献   

9.
The aim of this research work is to perform high quality direct numerical simulations (DNS) of a simplified single phase pressurized thermal shock (PTS) scenario with and without buoyancy effects. In that context, the objectives of this paper are (i) to present the road towards the DNS of a PTS design without buoyancy effects and (ii) to demonstrate that the code NEK5000 is adequate for true DNS analyses. This DNS of the PTS design will serve as a reference to validate low order CFD approaches. The higher order spectral element code NEK5000 is selected to perform the high quality DNS computations. The capabilities of this code, in order to perform the DNS for PTS like geometries, have been extensively assessed for a well-known turbulent channel flow configuration with Reτ =?180 (turbulent Reynolds number based on the wall friction velocity). Different numerical parameters of NEK5000 have been thoroughly tested and their influence has been studied to obtain high quality turbulence statistics. This assessment of NEK5000 is further extended for the application of highly skewed hexahedral (non-orthogonal) meshes in a turbulent channel flow. The obtained results have shown that NEK5000 is capable of producing high quality DNS solution for a PTS like complex flow configuration for skewed elements (meshes) up to 60 degrees. Finally, this tested numerical framework is adopted to perform the targeted DNS computations of the simplified PTS design.  相似文献   

10.
Turbulent flow over variably-shaped rough walls, characterized by either a regular or a random arrangement of axisymmetric roughness elements in an open channel flow configuration, is investigated computationally within a VLES (Very Large Eddy Simulation) framework by utilizing a volumetric forcing-based roughness model. The prime objective of the present work is to assess the roughness model’s capability to predict mean velocities and turbulent intensities in conjunction with this recently formulated hybrid LES/RANS (Reynolds-Averaged Navier-Stokes) model. The friction velocity-based Reynolds number is in the range Reτ =?460 ? 500. A non-dimensional drag function accounting for the shape of the roughness elements is introduced and evaluated based on the results of complementary direct numerical simulations (DNS). The dynamics of the residual motion of the presently adopted VLES methodology is described by an appropriately modified elliptic-relaxation-based ζ ? f (\(\zeta =\overline {v^{2}}/k\)) RANS model.  相似文献   

11.
The effect of micro-bubbles on the turbulent boundary layer in the channel flow with Reynolds numbers (Re) ranging from \(0.87\times 10 ^{5}\) to \(1.23\times 10^{5}\) is experimentally studied by using particle image velocimetry (PIV) measurements. The micro-bubbles are produced by water electrolysis. The velocity profiles, Reynolds stress and instantaneous structures of the boundary layer, with and without micro-bubbles, are measured and analyzed. The presence of micro-bubbles changes the streamwise mean velocity of the fluid and increases the wall shear stress. The results show that micro-bubbles have two effects, buoyancy and extrusion, which dominate the flow behavior of the mixed fluid in the turbulent boundary layer. The buoyancy effect leads to upward motion that drives the fluid motion in the same direction and, therefore, enhances the turbulence intense of the boundary layer. While for the extrusion effect, the presence of accumulated micro-bubbles pushes the flow structures in the turbulent boundary layer away from the near-wall region. The interaction between these two effects causes the vorticity structures and turbulence activity to be in the region far away from the wall. The buoyancy effect is dominant when the Re is relatively small, while the extrusion effect plays a more important role when Re rises.  相似文献   

12.
Using DNS, we investigate the dynamics in the wake of a circular disk of aspect ratio χ = d/w = 3 (where d is the diameter and w the thickness) embedded in a uniform flow of magnitude U 0 perpendicular to its symmetry axis. As the Reynolds number Re = U 0 d/ν is increased, the flow is shown to experience an original series of bifurcations leading to chaos. The range Re ${\in}$ [150, 218] is analysed in detail. In this range, five different non-axisymmetric regimes are successively encountered, including states similar to those previously identified in the flow past a sphere or an infinitely thin disk, as well as a new regime characterised by the presence of two distinct frequencies. A theoretical model based on the theory of mode interaction with symmetries, previously introduced to explain the bifurcations in the flow past a sphere or an infinitely thin disk (Fabre et al. in Phys Fluids 20:051702, 2008), is shown to explain correctly all these results. Higher values of the Reynolds number, up to 270, are also considered. Results indicate that the flow encounters at least four additional bifurcations before reaching a chaotic state.  相似文献   

13.
To unravel the widespread perception that the RANS (Reynolds-averaged Navier-Stokes) concept is unreliable in predicting the dynamics of separated flows, we assessed the performance of two RANS closure levels, the linear eddy-viscosity (LEVM) and the second-moment (Reynolds stress, RSM) approaches in a massively separated generic flow over a bluff body. Considered is the canonical, zero-turbulence, cross-flow over an infinite cylinder with reference to our LES and the available DNS and experiments at two Reynolds numbers, Re = 3.9 × 103 and 1.4 × 105, both within the sub-critical regime with laminar separation. Both models capture successfully the vortex shedding frequency, but the low frequency modulations are detected only by the RSM. At high Reynolds numbers the RSM is markedly superior to the LEVM showing very good agreement with the LES and experimental data. The RSM, accounting naturally for the stress anisotropy and phase lag between the stress and strain eigenvectors, is especially successful in reproducing the growth rate of the turbulent kinetic energy in the initial shear layer which proved to be crucial for accurate prediction of the separation-induced transition. A scrutiny of the unsteady RANS (URANS) stress terms based on the conditional phase-averaged LES data shows a remarkable similarity of the normalized coherent and stochastic (modeled) stress components for the two Reynolds numbers considered. The mixed (cross) correlations, while non-negligible at the low Re number, diminish fast relative to the stochastic ones with increasing Reynolds number and, in the whole, are not significant to undermine the URANS concept and its applicability to high Re flows of industrial relevance.  相似文献   

14.
15.
The head on quenching of statistically planar turbulent premixed flames by an isothermal inert wall has been analysed using three-dimensional Direct Numerical Simulation (DNS) data for different values of global Lewis number Le(0.8, 1.0 and 1.2) and turbulent Reynolds number Ret. The statistics of head on quenching have been analysed in terms of the wall Peclet number Pe (i.e. distance of the flame from the wall normalised by the Zel’dovich flame thickness) and the normalised wall heat flux Φ. It has been found that the maximum (minimum) value of Φ(Pe) for the turbulent Le=0.8 cases are greater (smaller) than the corresponding laminar value, whereas both Pe and Φ in turbulent cases remain comparable to the corresponding laminar values for Le=1.0 and 1.2. Detailed physical explanations are provided for the observed Le dependences of Pe and Φ. The existing closure of mean reaction rate \(\overline {\dot {\omega }}\) using the scalar dissipation rate (SDR) in the near wall region has been assessed based on a-priori analysis of DNS data and modifications to the existing closures of mean reaction rate and SDR have been suggested to account for the wall effects in such a manner that the modified closures perform well both near to and away from the wall.  相似文献   

16.
Transition to turbulence in axially symmetrical laminar pipe flows with periodic time dependence classified as pure oscillating and pulsatile (pulsating) ones is the concern of the paper. The current state of art on the transitional characteristics of pulsatile and oscillating pipe flows is introduced with a particular attention to the utilized terminology and methodology. Transition from laminar to turbulent regime is usually described by the presence of the disturbed flow with small amplitude perturbations followed by the growth of turbulent bursts. The visual treatment of velocity waveforms is therefore a preferred inspection method. The observation of turbulent bursts first in the decelerating phase and covering the whole cycle of oscillation are used to define the critical states of the start and end of transition, respectively. A correlation study referring to the available experimental data of the literature particularly at the start of transition are presented in terms of the governing periodic flow parameters. In this respect critical oscillating and time averaged Reynolds numbers at the start of transition; Re os,crit and Re ta,crit are expressed as a major function of Womersley number, $\sqrt {\omega ^\prime } $ defined as dimensionless frequency of oscillation, f. The correlation study indicates that in oscillating flows, an increase in Re os,crit with increasing magnitudes of $\sqrt {\omega ^\prime } $ is observed in the covered range of $1<\sqrt {\omega ^\prime } <72$ . The proposed equation (Eq. 7), ${\rm{Re}}_{os,crit} ={\rm{Re}}_{os,crit} \left( {\sqrt {\omega ^\prime } } \right)$ , can be utilized to estimate the critical magnitude of $\sqrt {\omega ^\prime }$ at the start of transition with an accuracy of ±12?% in the range of $\sqrt {\omega ^\prime } <41$ . However in pulsatile flows, the influence of $\sqrt {\omega ^\prime }$ on Re ta,crit seems to be different in the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ . Furthermore there is rather insufficient experimental data in pulsatile flows considering interactive influences of $\sqrt {\omega ^\prime } $ and velocity amplitude ratio, A 1. For the purpose, the measurements conducted at the start of transition of a laminar sinusoidal pulsatile pipe flow test case covering the range of 0.21<?A 1?<0.95 with $\sqrt {\omega ^\prime } <8$ are evaluated. In conformity with the literature, the start of transition corresponds to the observation of first turbulent bursts in the decelerating phase of oscillation. The measured data indicate that increase in $\sqrt {\omega ^\prime } $ is associated with an increase in Re ta,crit up to $\sqrt {\omega ^\prime } =3.85$ while a decrease in Re ta,crit is observed with an increase in $\sqrt {\omega ^\prime } $ for $\sqrt {{\omega }'} >3.85$ . Eventually updated portrait is pointing out the need for further measurements on i) the end of transition both in oscillating and pulsatile flows with the ranges of $\sqrt {\omega ^\prime } <8$ and $\sqrt {\omega ^\prime } >8$ , and ii) the interactive influences of $\sqrt {\omega ^\prime } $ and A 1 on Re ta,crit in pulsatile flows with the range of $\sqrt {\omega ^\prime } >8$ .  相似文献   

17.
An extended version of the isotropic R?Cequation model accompanied by an elliptic relaxation approach to account for the distinct effects of low-Reynolds number (LRN) and wall proximity is proposed. The turbulent kinetic energy k and the dissipation rate ? are evaluated using the R ( $=k^2/\tilde{\epsilon}$ ) transport equation together with some empirical relations. The eddy viscosity formulation maintains the positivity of normal Reynolds stresses and the Schwarz?? inequality for turbulent shear stresses. The model coefficients/functions preserve the anisotropic characteristics of turbulence in the sense that they are sensitized to rotational and nonequilibrium flows. The model is validated against a few well-documented flow cases, yielding predictions in good agreement with the direct numerical simulation (DNS) and experimental data. Comparisons indicate that the present model offers some improvement over the Spalart?CAllmaras one?Cequation model and competitiveness with the SST k?C?? model.  相似文献   

18.
Based on the finite volume method, the flow past a spinning circular cylinder at a low subcritical Reynolds number (Re =1 × 10 5), high subcritical Reynolds number (Re =1.3 ×10 5), and critical Reynolds number (Re =1.4 ×10 5) were each simulated using the Navier-Stokes equations and the γ-Re ?? transition model coupled with the SST k?ω turbulence model. The system was solved using an implicit algorithm. The freestream turbulence intensity decay was effectively controlled by the source term method proposed by Spalart and Rumsey. The variations in the Magnus force as a function of the spin ratio, α were obtained for the three Reynolds numbers, and the flow mechanism was analyzed. The results indicate that the asymmetric transitions induced by spin affect the asymmetric separations at the top and bottom surfaces of the circular cylinder, which further affects the pressure distributions at the top and bottom surfaces of the circular cylinder and ultimately result in a negative Magnus force, whose direction is opposite to that of the classical Magnus force. This study is the first to use a numerical simulation method to predict a negative Magnus force acting on a spinning circular cylinder. At the low subcritical Reynolds number, the Magnus force remained positive for all spin ratios. At the high subcritical Reynolds number, the sign of the Magnus force changed twice over the range of the spin ratio. At the critical Reynolds number, the sign of the Magnus force changed only once over the range of the spin ratio. For relatively low spin ratios, the Magnus force significantly differed by Reynolds number; however, this variation diminished as the spin ratio increased.  相似文献   

19.
Assessment of three regularization-based and two eddy-viscosity-based subgrid-scale (SGS) turbulence models for large eddy simulations (LES) are carried out in the context of magnetohydrodynamic (MHD) decaying homogeneous turbulence (DHT) with a Taylor scale Reynolds number (Reλ) of 120 and a MHD transition-to-turbulence Taylor-Green vortex (TGV) problems with a Reynolds number of 3000, through direct comparisons to direct numerical simulations (DNS). Simulations are conducted using the low-magnetic Reynolds number approximation (Rem<<1). LES predictions using the regularization-based Leray- α,LANS- α, and Clark- α SGS models, along with the eddy viscosity-based non-dynamic Smagorinsky and the dynamic Smagorinsky models are compared to in-house DNS for DHT and previous results for TGV. With regard to the regularization models, this work represents their first application to MHD turbulence. Analyses of turbulent kinetic energy decay rates, energy spectra, and vorticity fields made between the varying magnetic field cases demonstrated that the regularization models performed poorly compared to the eddy-viscosity models for all MHD cases, but the comparisons improved with increase in magnitude of magnetic field, due to a decrease in the population of SGS eddies within the flow field.  相似文献   

20.
The purpose of the present work is to study the various specific time scales of the turbulent separating flow around a square cylinder, in order to determine the Reynolds number effect on the separating shear layer, where occurs a transition to turbulence. Unsteady analysis based on large eddy simulation (LES) at intermediate Reynolds numbers and laser doppler velocimetry (LDV) measurements at high Reynolds numbers are carried out. The Reynolds number, based on the cylinder diameter D and the inflow velocity U o , is ranging from Re?=?50 to Re?=?300,000. A special focus is performed on the coherent structures developing on the sides and in the wake of a square cylinder. For a large Reynolds number range above Re?≈?1,000, both signatures of Von Karman (VK) and Kelvin–Helmholtz (KH) type vortical structures are found on velocity time samples. The combination of their frequency signature is studied based on Fourier and wavelet analysis. In the present study, We observe the occurrence of KH pairings in the separating shear layer on the side of the cylinder, and confirm the intermittency nature of such a shear flow. These issues concerning the structure of the near wake shear layer which were addressed for the round cylinder case in a recent experimental publication (Rajagopalan and Antonia, Exp Fluids 38:393–402, 2005) are of interest in the present flow configuration as well.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号