首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Auditory processing appears to include a series of domain-specific filtering operations that include tuning in the audio-frequency domain, followed by tuning in the temporal modulation domain, and perhaps tuning in the spectral modulation domain. To explore the possibility of tuning in the spectral modulation domain, a masking experiment was designed to measure masking patterns in the spectral modulation domain. Spectral modulation transfer functions (SMTFs) were measured for modulation frequencies from 0.25 to 14 cycles/octave superimposed on noise carriers either one octave (800-1600 Hz, 6400-12,800 Hz) or six octaves wide (200-12,800 Hz). The resulting SMTFs showed maximum sensitivity to modulation between 1 and 3 cycles/octave with reduced sensitivity above and below this region. Masked spectral modulation detection thresholds were measured for masker modulation frequencies of 1, 3, and 5 cycles/octave with a fixed modulation depth of 15 dB. The masking patterns obtained for each masker frequency and carrier band revealed tuning (maximum masking) near the masker frequency, which is consistent with the theory that spectral envelope perception is governed by a series of spectral modulation channels tuned to different spectral modulation frequencies.  相似文献   

2.
Modulation masking: effects of modulation frequency, depth, and phase   总被引:1,自引:0,他引:1  
Modulation thresholds were measured for a sinusoidally amplitude-modulated (SAM) broadband noise in the presence of a SAM broadband background noise with a modulation depth (mm) of 0.00, 0.25, or 0.50, where the condition mm = 0.00 corresponds to standard (unmasked) modulation detection. The modulation frequency of the masker was 4, 16, or 64 Hz; the modulation frequency of the signal ranged from 2-512 Hz. The greatest amount of modulation masking (masked threshold minus unmasked threshold) typically occurred when the signal frequency was near the masker frequency. The modulation masking patterns (amount of modulation masking versus signal frequency) for the 4-Hz masker were low pass, whereas the patterns for the 16- and 64-Hz maskers were somewhat bandpass (although not strictly so). In general, the greater the modulation depth of the masker, the greater the amount of modulation masking (although this trend was reversed for the 4-Hz masker at high signal frequencies). These modulation-masking data suggest that there are channels in the auditory system which are tuned for the detection of modulation frequency, much like there are channels (critical bands or auditory filters) tuned for the detection of spectral frequency.  相似文献   

3.
We compare psychophysical tuning curves obtained with sinusoidal and narrow-band (50-Hz wide) noise maskers in both simultaneous and forward masking. In one experiment, we examine the effects of different combinations of duration and intensity of the 1-kHz sinusoidal signal. In a second experiment, we compare tuning curves obtained with a sinusoidal signal to those obtained with a noise signal. In both experiments, a narrow-band noise is a more effective simultaneous masker than a sinusoid for masker frequencies near the signal frequency. We argue that this is probably due to the use of different detection cues in the presence of sinusoidal and noise maskers, and that the greater masking produced by the noise is not simply due to its greater variability. As observed in other studies, tuning curves are narrower in forward masking than in simultaneous masking.  相似文献   

4.
Psychophysical tuning curves measured in simultaneous and forward masking   总被引:4,自引:0,他引:4  
The level of a masker necessary to mask a probe fixed in frequency and level was determined as a function of masker frequency using a two-interval forced-choice technique. Both simultaneous- and forward- masking techniques were used. Parameters investigated include the level of the probe tone and the frequency of the probe tone. The general form of the psychophysical tuning curves obtained in this way is quite similar to that of single-neurone tuning curves, when low-level probe tones are used. However, the curves obtained to forward masking generally show sharper tips and steeper slopes than those found in simultaneous masking, and they are also generally sharper than neurophysiological tuning curves. For frequencies of the masker close to that of the probe a simultaneous masker was sometimes less effective than a forward masker. The results are discussed in relation to possible lateral suppression effects in simultaneous masking, and in relation to the observer's use of pitch cues in forward masking. It is concluded that neither the simultaneous-masking curves nor the forward-masking curves are likely to give an accurate representation of human neural tuning curves.  相似文献   

5.
In a previous article [Lutfi, J. Acoust. Soc. Am. 76, 1045-1050 (1984)], the following relation was used to predict measures of frequency selectivity obtained in forward masking from measures obtained in simultaneous masking: F(g) = G + H(g) - H(0), where, for a given masker level, F is the amount of forward masking (in dB) as a function of signal-masker frequency separation (g), H is the amount of simultaneous masking, and G is the amount of forward masking for g = 0. In the present study, the relation was tested for a wider range of signal and masker frequencies, masker levels, and signal delays. The relation described thresholds from all conditions well with the inclusion of one free parameter lambda corresponding to a constant frequency increment, F(g) = G + H(g + lambda) - H(lambda). The parameter lambda was required to account for observed shifts in the frequency of maximum forward masking. It is argued that a single tuning mechanism can account for commonly observed differences between simultaneous- and forward-masked measures of frequency selectivity.  相似文献   

6.
Two experiments are described in which frequency selectivity was estimated, in simultaneous and forward masking, for each ear of subjects with moderate (25-60 dB HL) unilateral cochlear hearing losses. In both experiments, the signal level was fixed for a given ear and type of masking (simultaneous or forward), and the masker level was varied to determine threshold, using an adaptive, two-alternative forced-choice procedure. In experiment I, the masker was a noise with a spectral notch centered at the signal frequency (either 1.0 or 1.5 kHz); threshold was determined as a function of notch width. Signal levels were chosen so that the noise level required at threshold for a notch width of zero was similar for the normal and impaired ear of each subject in both simultaneous and forward masking. The function relating threshold to notch width had a steeper slope for the normal ear than for the impaired ear of each subject. For the normal ears, these functions were steeper in forward masking than in simultaneous masking. This difference was interpreted as resulting from suppression. For the impaired ears, significant differences in the same direction were observed for three of the five subjects, but the differences were smaller. In experiment II, psychophysical tuning curves (PTCs) were determined in the presence of a fixed notched noise centered at the signal frequency (1.0 kHz). For the normal ears, the PTCs were sharper in forward masking than in simultaneous masking. For the impaired ears, the PTCs were similar in simultaneous and forward masking, but those in forward masking tended to be sharper at masker frequencies far removed from the signal frequency. Overall, the results suggest that suppression is reduced, but not completely absent in cases of moderate cochlear hearing loss.  相似文献   

7.
利用激光的高亮度、高方向性和液晶空间光调制器的光强可调制特性和旋光特性,提出了一种新的激光立体显示方法。阐述了该方法的基本原理,设计了相应的实验系统,获得了较为满意的立体显示效果。由于该立体显示方法采用全电子时序控制,无需复杂的机械扫描控制,系统结构简单,程序可控性好,在长景深、大屏幕立体显示领域具有较好的应用前景。  相似文献   

8.
The detection of 500- or 2000-Hz pure-tone signals in unmodulated and modulated noise was investigated in normal-hearing and sensorineural hearing-impaired listeners, as a function of noise bandwidth. Square-wave modulation rates of 15 and 40 Hz were used in the modulated noise conditions. A notched noise measure of frequency selectivity and a gap detection measure of temporal resolution were also obtained on each subject. The modulated noise results indicated a masking release that increased as a function of increasing noise bandwidth, and as a function of decreasing modulation rate for both groups of listeners. However, the improvement of threshold with increasing modulated noise bandwidth was often greatly reduced among the sensorineural hearing-impaired listeners. It was hypothesized that the masking release in modulated noise may be due to several types of processes including across-critical band analysis (CMR), within-critical band analysis, and suppression. Within-band effects appeared to be especially large at the higher frequency region and lower modulation rate. In agreement with previous research, there was a significant correlation between frequency selectivity and masking release in modulated noise. At the 500-Hz region, masking release was correlated more highly with the filter skirt and tail measures than with the filter passband measure. At the 2000-Hz region, masking release was correlated more with the filter passband and skirt measures than with the filter tail measure. The correlation between gap detection and masking release was significant at the 40-Hz modulation rate, but not at the 15-Hz modulation rate. The results of this study suggest that masking release in modulated noise is limited by frequency selectivity at low modulation rates, and by both frequency selectivity and temporal resolution at high modulation rates. However, even when the present measures of frequency selectivity and temporal resolution are both taken into account, significant variance in masking release still remains unaccounted for.  相似文献   

9.
To investigate the effect of exposure duration on stereopsis and its spatial frequency dependency, we measured disparity threshold for the depth discrimination varying stimulus exposure duration between 0.05 and 2 s for three spatial frequencies (0.23, 0.94 and 3.75 c/deg). The results showed that disparity threshold decreased with increase in exposure duration up to a certain duration, beyond which it was approximately constant (the duration is called critical duration). The critical duration was about 150 ms for gratings with low and middle spatial frequencies (0.23 and 0.94 c/deg) while the duration was about 750 ms for gratings with high spatial frequency (3.75 c/deg). This suggests that temporal integration property varies dependently on stimulus spatial frequency. We also attempted to relate the spatial frequency dependency of the temporal integration property to the differences in temporal frequency tuning to different spatial frequency stimuli.  相似文献   

10.
Modulation thresholds were measured in three subjects for a sinusoidally amplitude-modulated (SAM) wideband noise (the signal) in the presence of a second amplitude-modulated wideband noise (the masker). In monaural conditions (Mm-Sm) masker and signal were presented to only one ear; in binaural conditions (M0-S pi) the masker was presented diotically while the phase of modulation of the SAM noise signal was inverted in one ear relative to the other. In experiment 1 masker modulation frequency (fm) was fixed at 16 Hz, and signal modulation frequency (fs) was varied from 2-512 Hz. For monaural presentation, masking generally decreased as fs diverged from fm, although there was a secondary increase in masking for very low signal modulation frequencies, as reported previously [Bacon and Grantham, J. Acoust. Soc. Am. 85, 2575-2580 (1989)]. The binaural masking patterns did not show this low-frequency upturn: binaural thresholds continued to improve as fs decreased from 16 to 2 Hz. Thus, comparing masked monaural and masked binaural thresholds, there was an average binaural advantage, or masking-level difference (MLD) of 9.4 dB at fs = 2 Hz and 5.3 dB at fs = 4 Hz. In addition, there were positive MLDs for the on-frequency condition (fm = fs = 16 Hz: average MLD = 4.4 dB) and for the highest signal frequency tested (fs = 512 Hz: average MLD = 7.3 dB). In experiment 2 the signal was a SAM noise (fs = 16 Hz), and the masker was a wideband noise, amplitude-modulated by a narrow band of noise centered at fs. There was no effect on monaural or binaural thresholds as masker modulator bandwidth was varied from 4 to 20 Hz (the average MLD remained constant at 8.0 dB), which suggests that the observed "tuning" for modulation may be based on temporal pattern discrimination and not on a critical-band-like filtering mechanism. In a final condition the masker modulator was a 10-Hz-wide band of noise centered at the 64-Hz signal modulation frequency. The average MLD in this case was 7.4 dB. The results are discussed in terms of various binaural capacities that probably play a role in binaural release from modulation masking, including detection of varying interaural intensity differences (IIDs) and discrimination of interaural correlation.  相似文献   

11.
This study was designed to investigate the effects of masker level and frequency on binaural detection and interaural time discrimination. Detection and interaural time discrimination of a 700-Hz sinusoidal signal were measured as a function of the center frequency and level of a narrow-band masking noise. The masker was a continuous, diotic, 80-Hz-wide noise that varied in center frequency from 250 to 1370 Hz. In the detection experiment, the signal was presented either diotically (NoSo) or interaurally phase reversed (NoS pi). In the interaural time discrimination experiment, the signal level needed to discriminate a 30-microseconds interaural delay was measured. As would be expected, the presence of the masker has a greater effect on NoSo detection than NoS pi detection, and for masker frequencies at or near the signal frequency. In contrast, interaural time discrimination can be improved by the presence of a low-level masker. Also, performance improves more rapidly as the signal/masker frequency separation increases for NoSo detection than for interaural time discrimination and NoS pi detection. For all three tasks, significant upward spread of masking occurs only at the highest masker level; at low masker levels, there is a tendency toward downward spread of masking.  相似文献   

12.
Spatial release from masking was studied in a three-talker soundfield listening experiment. The target talker was presented at 0 degrees azimuth and the maskers were either colocated or symmetrically positioned around the target, with a different masker talker on each side. The symmetric placement greatly reduced any "better ear" listening advantage. When the maskers were separated from the target by +/-15 degrees , the average spatial release from masking was 8 dB. Wider separations increased the release to more than 12 dB. This large effect was eliminated when binaural cues and perceived spatial separation were degraded by covering one ear with an earplug and earmuff. Increasing reverberation in the room increased the target-to-masker ratio (TM) for the separated, but not colocated, conditions reducing the release from masking, although a significant advantage of spatial separation remained. Time reversing the masker speech improved performance in both the colocated and spatially separated cases but lowered TM the most for the colocated condition, also resulting in a reduction in the spatial release from masking. Overall, the spatial tuning observed appears to depend on the presence of interaural differences that improve the perceptual segregation of sources and facilitate the focus of attention at a point in space.  相似文献   

13.
Vibrotactile thresholds for the detection of a 50-ms vibratory stimulus on the thenar eminence of the hand were measured in the presence of and in the absence of a 700-ms suprathreshold vibratory masking stimulus. When thresholds were measured in the presence of the masking stimulus, stimulus onset asynchrony (SOA) was varied so that backward, simultaneous, and forward masking could be measured. The amount of masking, expressed as threshold shift, was greatest when the test stimulus was presented near the onset or offset of the masking stimulus. For both backward and forward masking, the amount of masking decreased as a function of increasing stimulus onset asynchrony. Comparisons were made of the amounts of masking measured when the test and masking stimuli were both sinusoids, and when the test stimulus was a sinusoid and the masking stimulus was noise. In all conditions, the masked threshold decreased approximately 4.0 dB when SOA was increased from 100 to 650 ms with reference to the onset of the 700-ms masking stimulus. More simultaneous masking was observed when sinusoidal test stimuli were detected in the presence of noise than when they were detected in the presence of sinusoidal maskers of the same frequency. The functions were essentially identical for detection of a low-frequency (20 Hz) test stimulus mediated by a non-Pacinian channel and detection of a high-frequency (250 Hz) test stimulus mediated by the Pacinian channel.  相似文献   

14.
Three psychophysical forward masking studies were conducted on a multichannel cochlear implant patient. The first study investigated the masking pattern produced by a bipolar electrode pair at different stimulus currents. It was found that the masking pattern for a single-masker bipolar electrode pair had a maximum located at an electrode position where the masker and probe coincided. The spread of the masking pattern was not symmetrical about the maximum. The amount of masking decreased very rapidly toward the apical direction and less rapidly toward the basal direction from the position of the maximum. As the stimulus current increased, the amount of masking at the maximum increased and the masking pattern broadened toward the base. The second study investigated the masking pattern produced by the activation of single bipolar electrode pairs with different spatial extents. The spatial extent of a bipolar electrode pair is defined as the distance between the apical and basal electrode members of the bipolar pair. With a small spatial extent (1.5 mm), the more basal electrode pairs (higher threshold and smaller dynamic range) produced broader masking patterns than the more apical electrode pairs (lower threshold and wider dynamic range), suggesting that there was more current spread at the basal region. With a larger spatial extent (4.5 mm), an additional secondary masking maximum was observed in the vicinity of the apical electrode member of the masker; this was observed only when the apical electrode member lay within the low-threshold apical region. The third study investigated the masking patterns produced by two loudness balanced bipolar masker electrode pairs activated within a stimulus period (inverse of the pulse repetition rate). The biphasic current pulses delivered to the two electrode pairs were nonoverlapping in time. It was found that, at any probe electrode position, the amount of masking produced by the two combined bipolar electrode pairs approximately followed the greater of the two maskings produced respectively by the two individual bipolar masker electrode pairs.  相似文献   

15.
田丽萍  李立立  温文龙  王兴  陈萍  卢裕  王俊锋  赵卫  田进寿 《物理学报》2018,67(18):188501-188501
针对无人机载及星载激光成像雷达系统对条纹管的小型化、高空间分辨率与大探测面积的应用需求,研制了一台具有高边缘空间分辨能力、高亮度增益的小型条纹相机.采用球面光电阴极、球面荧光屏技术提高了条纹相机的边缘空间分辨率和探测面积,有利于增大激光成像雷达的探测视场;采用狭缝型加速电极代替传统栅网电极,有利于提高条纹相机的电耐性和可靠性;设计了加载高达-15 kV工作电压的像缩小型条纹管,增大了条纹管的亮度增益,有助于增大激光雷达系统的探测距离.测试结果显示:在有效工作面积16 mm×2 mm内,条纹管静态空间分辨率高于29.3 lp/mm@MTF=5%(MTF表示调制传递函数),亮度增益高达39.4.条纹相机光电阴极处静态空间分辨率高于15 lp/mm@CTF=11.64%(CTF表示对比度传递函数);边缘动态空间分辨率高于9.8 lp/mm@CTF=5.51%;时间分辨率优于54.6 ps@Tscreen=4.3 ns(Tscreen为全屏时间)且在整个工作面积内具有较高的一致性;动态范围为345:1@54.6 ps.同时,为满足不同的景深及探测精度需求,相机设置六个扫描档位,可以实现不同扫速下的超快速目标诊断.该条纹相机在无人机载及星载激光成像雷达探测中具有潜在的实用价值.  相似文献   

16.
The performance of large-aperture hydrophone arrays to detect and localize blue and fin whales' 15-85 Hz signature vocalizations under ocean noise conditions was assessed through simulations from a normal mode propagation model combined to noise statistics from 15 960 h of recordings in Saguenay-St. Lawrence Marine Park. The probability density functions of 2482 summer noise level estimates in the call bands were used to attach a probability of detection/masking to the simulated call levels as a function of whale depth and range for typical environmental conditions. Results indicate that call detection was modulated by the calling depth relative to the sound channel axis and by modal constructive and destructive interferences with range. Masking of loud infrasounds could reach 40% at 30 km for a receiver at the optimal depth. The 30 dB weaker blue whale D-call were subject to severe masking. Mapping the percentages of detection and localization allowed assessing the performance of a six-hydrophone array under mean- and low-noise conditions. This approach is helpful for optimizing hydrophone configuration in implementing passive acoustic monitoring arrays and building their detection function for whale density assessment, as an alternative to or in combination with the traditional undersampling visual methods.  相似文献   

17.
An accurate control of fundamental frequency (F0) is required from singers. This control relies on auditory and kinesthetic feedback. However, a loud accompaniment may mask the auditory feedback, leaving the singers to rely on kinesthetic feedback. The object of the present study was to estimate the significance of auditory and kinesthetic feedback to pitch control in 28 students beginning a professional solo singing education. The singers sang an ascending and descending triad pattern covering their entire pitch range with and without masking noise in legato and staccato and in a slow and a fast tempo. F0 was measured by means of a computer program. The interval sizes between adjacent tones were determined and their departures from equally tempered tuning were calculated. The deviations from this tuning were used as a measure of the accuracy of intonation. Statistical analysis showed a significant effect of masking that amounted to a mean impairment of pitch accuracy by 14 cent across all subjects. Furthermore, significant effects were found of tempo as well as of the staccato/legato conditions. The results indicate that auditory feedback contributes significantly to singers' control of pitch.  相似文献   

18.
19.
The temporal evolution of masking and frequency selectivity was studied in the goldfish using classical respiratory conditioning and a tracking psychophysical procedure. The temporal position of a brief tonal signal within a longer duration, tonal masker has little or no effect on signal detectability when the frequency of the masker is less than or equal to that of the signal. For masker frequencies above that of the signal, signal detectability improves as the signal onset is delayed relative to that of the masker. These patterns of tone-on-tone masking are quite similar to those observed for humans. These temporal masking patterns are qualitatively similar in shape to the peristimulus-time histogram profiles of the low-frequency saccular fibers thought to be used in this task. Frequency- and time-dependent changes in signal detectability result in specific changes in the sharpness of psychophysical tuning curves (PTC). In general, PTCs determined for signals occurring at masker onset are the most broadly tuned, and PTCs determined in forward masking are the most sharply tuned. The PTCs for signals temporally centered in the masker are intermediate. These results suggest that temporal tone-on-tone masking patterns and the temporal evolution of psychophysical tuning curves result from the response properties of peripheral auditory-nerve fibers.  相似文献   

20.
This study examined two-tone unmasking and auditory frequency selectivity about 3 kHz for the purpose of demonstrating a qualitative relationship between the two. An adaptive 2IFC forward-masking procedure was used to collect psychophysical tuning curves (PTC's) and two-tone masking data under a quiet and noise condition for the same normal-hearing listeners. In the noise condition, a narrowband noise masker, centered one decade down from the probe, was gated on with the tonal masker(s). Kiang and Moxon [J. Acoust. Soc. Am. 55, 620-630 (1974)] have found that low-frequency narrowband noise serves to decrease the sharpness of electrophysiological tuning curves by affecting only the tip segments. The data for four highly practiced listeners indicate that the gated-noise masker was effective in broadening the PTC's and in lessening the magnitude of two-tone unmasking. The mutually reflected changes in tuning curves and in two-tone unmasking indicate a close relationship between frequency selectivity and unmasking: the greater the magnitude of unmasking above the center frequency of the PTC, the sharper the tuning of the PTC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号