首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To understand the effect of different vibrational and rotational modes of reactant to enhance the reactivity of the O + HO2 → OH + O2 reaction, we revisited this important atmospheric reaction. We report here a quasi-classical trajectory (QCT) study of the reaction dynamics on a recently developed full-dimensional potential energy surface (PES). Our previous work has indicated that this reaction has two pathways, the H abstraction (HA) channel and the O abstraction (OA) channel, which lead to totally different product energy distribution. In this work, we identified that the vibrational excitation of the OH stretching (v1) mode of HO2 is the switch of the HA channel at low collision energy; meanwhile, the rotational excitation can also greatly change the branching ratio of the two pathways. With the excitation of v1 mode, the original negligible HA channel controlled by the tight transition state becomes quite important. This work presents an approach to control the branching ratio via collaboration between vibrational and rotational excitation and will enrich the knowledge of the O + HO2 reaction in atmospheric chemistry and physics.  相似文献   

2.
The reaction between the HO radical and (H2O)n (n?=?1, 3) clusters has been investigated employing high-level quantum mechanical calculations using DFT-BH&HLYP, QCISD, and CCSD(T) theoretical approaches in connection with the 6-311?+?G(2df,2p), aug-cc-pVTZ, and aug-cc-pVQZ basis sets. The rate constants have also been calculated and the tunneling effects have been studied by means of time?Cdependent wavepacket calculations, performed using the Quantum?CReaction Path Hamiltonian method. According to the findings of previously reported theoretical works, the reaction between HO and H2O begins with the formation of a pre-reactive complex that is formed before the transition state, the formation of a post-reactive complex, and the release of the products. The reaction between HO and (H2O)2 also begins with the formation of a pre-reactive complex, which dissociates into H2O??HO?+?H2O. The reaction between HO and (H2O)3 is much more complex. The hydroxyl radical adds to the water trimer, and then it occurs a geometrical rearrangement in the pre-reactive hydrogen-bonded complex region, before the transition state. The reaction between hydroxyl radical and water trimer is computed to be much faster than the reaction between hydroxyl radical and a single water molecule, and, in both cases, the tunneling effects are very important mainly at low temperatures. A prediction of the atmospheric concentration of the hydrogen-bonded complexes studied in this work is also reported.  相似文献   

3.
The reduction processes of anodic PbO2 films formed on Pb-Sb alloys in 4.5mol·dm-3 H2SO4 solution at 1.4 V(vs.Hg/Hg2SO4) for 1 h have been investigated by pho-tocurrent method,chronoamperometry,linear sweep voltammetry as well as X-ray diifractornetry.It was found that the reduction of most of the β-PbO2 and part of the α-PbO2 to PbSO4 can be completed within I s between 0.9 V and 1.0 V(vs.Hg/Hg2SO4) and proceeds much faster than that of the remaining a-PbO2 into photoactive α·PbOx (1相似文献   

4.
Mixtures of organic compounds with mineral dust are ubiquitous in the atmosphere, whereas the formation pathways and hygroscopic behavior of these mixtures are not well understood. In this study, in situ DRIFTS, XRD, and a vapor sorption analyzer were used to investigate the heterogeneous reaction of acetic acid on α-Al(2)O(3), MgO, and CaCO(3) particles under both dry and humid conditions while the effect of reactions on the hygroscopic behavior of these particles was also measured. In all cases, formation of acetate is significantly enhanced in the presence of surface water. However, the reaction extent varied with the mineral phase of these particles. For α-Al(2)O(3), the reaction is limited to the surface with the formation of surface coordinated acetate under both dry and humid conditions. For MgO, the bulk of the particle is involved in the reaction and Mg(CH(3)COO)(2) is formed under both dry and humid conditions, although it exhibits a saturation effect under dry conditions. In the case of CaCO(3), acetic acid uptake is limited to the surface under dry conditions while it leads to the decomposition of the bulk of CaCO(3) under humid conditions. While coordinated surface acetate species increased the water adsorption capacity slightly, the formation of bulk acetate promoted the water absorption capacity greatly. This study demonstrated that heterogeneous reaction between CH(3)COOH and mineral dust is not only an important sink for CH(3)COOH, but also has a significant effect on the hygroscopic behavior of mineral dust.  相似文献   

5.
The effect of Sn content on properties of anodic film formed on PbSn alloys in sulfuric acid solution was investigated using linear sweeping voltage (LSV), cyclic voltammetry (CV), and a.c. voltammetry (ACV), based on the Mott-Schottky analysis. The results revealed that the addition of Sn into lead alloys can promote the corrosion resistance property and could decrease the impedance of anodic film; these results were more remarkable with enhancing the Sn content. The over potential of oxygen evolution on lead alloys enhanced with the increase of Sn content. The Mott-Schottky analysis indicated that the passive film appeared an n-type semiconductor, and the donor density of passive film increased with increasing Sn content. The increased vacancies in the passive film with Sn content increasing could illustrate this trend.  相似文献   

6.
The hydrogen transfer reaction in the reaction of HOSO + NO2 with and without H2O have been investigated using multicomponent quantum-mechanics method, which can directly take nuclear quantum effect (NQE) of light nuclei into account. For the case of the reaction without H2O, our calculation reveals that the reaction leading to trans-HONO is preferred. For the reaction with H2O, water-non-mediated and water-mediated (hydrogen-relay) hydrogen transfer mechanism are investigated. The NQE of hydrogen nucleus lowers the relative energy of the stationary point structures and reduces the activation barrier of the reactions. The largest stabilization is found in the transition state structure of the hydrogen-relay type reaction. H/D isotope effects for the reactions are also analyzed. In particular, H/D isotope effect on the activation barrier is analyzed in detail with the aid of the active strain model.  相似文献   

7.
The reactions of H(2)COO with HO(2) and the HO(2)···H(2)O complex are studied by employing the high-level quantum chemical calculations with B3LYP and CCSD(T) theoretical methods, the conventional transition-state theory (CTST), and the Rice-Ramsperger-Kassel-Marcus (RRKM) with Eckart tunneling correction. The calculated results show that the proton transfer plus the addition reaction channel (TS1A) is preferable for the reaction of H(2)COO with HO(2) because the barriers are -10.8 and 1.6 kcal/mol relative to the free reactants and the prereactive complex, respectively, at the CCSD(T)/6-311++G(3df,2p)//B3LYP/6-311++G(d,p) level of theory. Furthermore, the rate constant via TS1A (2.23 × 10(-10) cm(3) molecule(-1) s(-1)) combined with the concentrations of the species in the atmosphere demonstrates that the HO(2) radical would be the dominant sink of H(2)COO in some areas, where the concentration of water is less than 10(17) molecules cm(-3). In addition, although the single water molecule would lower the activated barrier of TS1A from 1.0 to 0.1 kcal/mol with respect to the respective complexes, the rate constant is lower than that of the reaction of HO(2) with H(2)COO.  相似文献   

8.
The HO(2) + HO(2) → H(2)O(2) + O(2) chemical reaction is studied using statistical rate theory in conjunction with high level ab initio electronic structure calculations. A new theoretical rate coefficient is generated that is appropriate for both high and low temperature regimes. The transition state region for the ground triplet potential energy surface is characterized using the CASPT2/CBS/aug-cc-pVTZ method with 14 active electrons and 10 active orbitals. The reaction is found to proceed through an intermediate complex bound by approximately 9.79 kcal/mol. There is no potential barrier in the entrance channel, although the free energy barrier was determined using a large Monte Carlo sampling of the HO(2) orientations. The inner (tight) transition state lies below the entrance threshold. It is found that this inner transition state exhibits two saddle points corresponding to torsional conformations of the complex. A unified treatment based on vibrational adiabatic theory is presented that permits the reaction to occur on an equal footing for any value of the torsional angle. The quantum tunneling is also reformulated based on this new approach. The rate coefficient obtained is in good agreement with low temperature experimental results but is significantly lower than the results of shock tube experiments for high temperatures.  相似文献   

9.
The phase diagrams for the ternary systems H2O?+?2-butanol?+?K2HPO4/KH2PO4 (pH?=?7) and H2O?+?2-butanol?+?Na2CO3 at 298.15?K were determined. Experimental binodals and tie lines for these systems are presented. The experimental results were correlated using an improved regular solution theory. The agreement between the correlation and experimental data is good.  相似文献   

10.
The reaction mechanisms between propadienylidene and R–H (R=F, OH, NH2, CH3) have been systematically investigated employing the second-order Moller–Plesset perturbation theory (MP2) method in order to better understand the reactivity of propadienylidene with those R–H compounds. We have investigated the reaction mechanisms and obtained the possible potential energy surface of these reactions, and we found the mechanisms of four reactions are identical to each other. Based on the calculated results, we can see that there are three steps along the reaction pathway of propadienylidene and R–H. The first step is that propadienylidene inserts into R–H bond to form an allene compound. The second- and third-steps are relevant to the H-transfer reaction, and the final product is alkyne.  相似文献   

11.
Diamond composites were prepared by sintering diamond grains with low melting Na2O–B2O3–SiO2 vitrified bonds in air. The influence of ZnO on the wettability and flowing ability of Na2O–B2O3–SiO2 vitrified bonds was characterized by wetting angle, the interfacial bonding states between diamond grains and the vitrified bonds were observed by scanning electron microscope (SEM), and the micro-scale bonding mechanism in the interfaces was investigated by means of energy-dispersive spectrometer (EDS), Fourier transform infrared (FTIR) spectrometer and X-ray photoelectron spectroscopy (XPS). The experimental results showed that ZnO facilitated the dissociation of boron/silicon–oxygen polyhedra and the formation of larger amount of non-bridging oxygen in the glass network, which resulted in the increase of the vitrified bonds' wettability and the formation of –CO, –O–H and –C–H bonds on the surface of diamond grains. B and Si diffused from the vitrified bonds to the interface, and C–C, C–O, CO and C–B bond formed on the surface of sintered diamond grains during sintering process, by which the interfacial bonding between diamond grains and the vitrified bonds was strengthened.  相似文献   

12.

Millions of people around the world have been suffering from Alzheimer’s disease (AD) everyday. Rivastigmine tartrate is a potential AD drug. A crystallization process can enhance purities of rivastigmine tartrate properly. Predictive models for solubilities of rivastigmine tartrate will improve subsequent industrial crystallization process design. In this work, the solubility of rivastigmine tartrate in (H2O?+?isopropanol), (H2O?+?ethanol), and (H2O?+?acetonitrile) binary solvent systems in the temperature range of 278.15–333.15 K under atmospheric pressure was measured and investigated by employing the analytical stirred-flask method. Binary solvent systems of rivastigmine tartrate overcame drawbacks of mono-solvent crystallization systems, such as high viscosity. Three thermodynamic models, including modified Apelblat equation, the general cosolvency model, and the Jouyban–Acree model, were employed to correlate with the obtained experimental solubility data. Moreover, the calculations of apparent thermodynamic properties of rivastigmine tartrate dissolution process involving the Gibbs free energy, enthalpy, and entropy were accomplished by using the van’t Hoff analysis. Among the three models, the modified Apelblat equation is the most suitable one for predicting the solubility behavior of rivastigmine tartrate in binary solvent systems. Based on the data from modified Apelblat equation, a crystallization process of (H2O?+?ethanol) binary solvent mixture was developed.

  相似文献   

13.
Density function theory UB3LYP/6-31 g(d) calculations were performed to study the hydrogen bonds between para-substituted phenols and HF, H2O, or NH3. It revealed that many properties of the non-covalent complexes, such as the interaction energies, donor-acceptor distances, bond lengths and vibration frequencies, showed well-defined substituent effects. Therefore, from the substituent effects not only the mechanism of a certain non-covalent interaction can be better understood, but also the interaction energies and structures of a certain non-covalent complex, which otherwise might be very hard or resource-consuming to estimate, can be easily predicted.  相似文献   

14.
The rate of the reaction between 9,10-anthracenedimethanol and maleic anhydride in 1,4-dioxane, acetonitrile, trichloromethane, and toluene is studied at 25, 35, 45°C in the pressure range of 1–1772 bar. The rate constants, enthalpies, entropies and activation volumes are determined. It is shown that the rate of reaction with 9,10-anthracenedimethanol is approximately one order of magnitude higher than with 9-anthracenemethanol.  相似文献   

15.
Effect of reaction temperature and pressure on the metathesis reaction between ethene and 2-butene to propene was studied on the WO3/γ-Al2O3-HY catalyst. The activity is found to increase with elevated temperature and reaches a plateau at 150-240℃. After that, the activity undergoes a remarkable decrement at too high temperature. The effect of temperature is elucidated by the oxidation state of tungsten species. The evaluation results also indicate that the stability is dependent on this reaction parameter. Medium pressure (0.5-0.8 MPa) is favorable for stability, while atmospheric pressure or too high pressure (>1.0 MPa) deteriorates the stability. For explanation, UV Vis, FT-IR, O2-TPO, and TG techniques are used to characterize the spent catalysts.  相似文献   

16.
In a recent paper (Radiation Physics and Chemistry, 2005, vol. 74, pp. 210) it was suggested that the anomalous increase of molecular hydrogen radiolysis yields observed in high-temperature water is explained by a high activation energy for the reaction H+H2O→H2+OH. In this comment we present thermodynamic arguments to demonstrate that this reaction cannot be as fast as suggested. A best estimate for the rate constant is 2.2×103 M−1 s−1 at 300 °C. Central to this argument is an estimate of the OH radical hydration free energy vs. temperature, ΔGhyd(OH)=0.0278t−18.4 kJ/mole (t in °C, equidensity standard states), which is based on analogy with the hydration free energy of water and of hydrogen peroxide.  相似文献   

17.
Thermite reactions between aluminum and metal oxides could lead to the formation of intermetallic matrix composites used in high-temperature industrial applications. Thermite reaction in Al–TiO2 system needs a considerable amount of energy to take place by mechanochemical or by the combustion synthesis (CS) method due to the low amount of reaction enthalpy in Al–TiO2 system. In this study, Fe2O3 was chosen as a accelerator for this system, to generate a high amount of heat which could be released between Fe2O3 and Al, leading to a more convenient reaction between Al and TiO2 in the CS process. The results of XRD, SEM, and DSC analyses indicated that both the mechanical activation of Al–TiO2 system in a high-energy ball mill and the Fe2O3 addition led to considerable effects of reduction in the reaction temperature and increase in the reaction intensity in Al–TiO2 nanothermite system. Finally, it was shown that Fe3Al intermetallic compounds as well as γ-AlTi and alumina phases in the final products were formed after the CS of the milled powders.  相似文献   

18.
In this paper, we report results of thermoanalytical investigation on the reaction between ZrOCl2·8H2O and (NH4)2HPO4 in molar ratio 1:2. Differential thermal-thermogravimetric and X-ray diffraction analyses were performed in order to reveal the chemical transformations, which took place during heating of the individual compounds ZrOCl2·8H2O, (NH4)2HPO4 and the mixture ZrOCl2·8H2O:2(NH4)2HPO4. It was shown that the transformations in the mixture below 160 °C were connected with dehydration of ZrOCl2·8H2O and interaction between the components of the mixture, which resulted in the formation of NH4Cl, NH4H2PO4 and a mainly amorphous zirconium phase, most likely t-ZrO2. The zirconium component subsequently reacted with ammonium dihydrophosphate (below 200 °C) or with dehydrated phosphate derivatives (above 200 °C), which in both cases yielded an amorphous product. The interaction between the components of the mixture resulting in the formation of ZrP2O7 was completed by its crystallisation at 610 °C. Our study indicates an alternative low-temperature approach for the synthesis of the technologically important ZrP2O7 material.  相似文献   

19.
The influence of pH, relative molecular weight and concentration of poly(acrylic acid) (PAA) on the viscosity of PAA solution was investigated. It was found that the rheology of PAA solution was closely related to the ionization and conformation of PAA chains. The increasing rigidity and the stretching of polymer chain resulted in a maximum viscosity at pH=8. The viscosity change of PAAsolution with addition of alumina powder was studied. It was found that the suspension viscosity reached its minimum when the amount of ceramic powder and PAA was at a certain ratio. At the same time, the viscosity minimum was also influenced by the particle size of powder.  相似文献   

20.
The enthalpies of dissolution of sodium metavanadate dihydrate in aqueous solutions of chloric acid and sodium perchlorate were measured by calorimetry at 298.15 K at ionic strengths of I = 0.3, 0.4, 0.5, 0.6, and 1.0 M. The standard formation enthalpy of the VO 2 + ion in aqueous solution was calculated from the resulting experimental data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号