首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The title compound, [Zn(C2H3O2)(C6H18N4)][B5O6(OH)4], contains mixed‐ligand [Zn(CH3COO)(teta)]+ complex cations (teta is triethylenetetramine) and pentaborate [B5O6(OH)4] anions. The [B5O6(OH)4] anions are connected to one another through hydrogen bonds, forming a three‐dimensional supramolecular network, in which the [Zn(CH3COO)(teta)]+ cations are located.  相似文献   

2.
The structure of a new synthetic compound, di­ammonium tetra­hydroxy­deca­borate monohydrate, has been determined by single‐crystal X‐ray diffraction. It crystallizes in triclinic space group and all atoms occupy general sites. The title compound is composed of [B10O15(OH)4]4− ions as the fundamental building blocks, and these are linked end‐to‐end by sharing two common O atoms, thus producing infinite chains of composition [B10O14(OH)4]n2n. These chains are linked by hydrogen bonds, thus forming borate sheets. Water mol­ecules and ammonium ions between these sheets connect adjacent sheets via hydrogen bonds.  相似文献   

3.
A novel mixed alkali metal hydrated borate NaCs[B10O14(OH)4] was synthesized under hydrothermal conditions. Its structure was determined by single-crystal X-ray diffraction and further characterized by FT-IR spectroscopy, TG-DTA, powder X-ray diffraction, and chemical analysis. NaCs[B10O14(OH)4] crystallizes in monoclinic space group P2/c with a = 7.6588(3) Å, b = 9.0074(3) Å, c = 11.8708(6) Å, and β = 115.682(3)°. The crystal structure of NaCs[B10O14(OH)4] consists of Na–O, Cs–O polyhedral, and [B10O14(OH)4]2? polyborate anions. [B10O14(OH)4]2? units are connected together through common oxygen atoms forming a 1D helical chain-like structure, which are further connected by O–H···O hydrogen bonds forming a 3D supramolecular structure. Through a designed thermochemical cycle, the standard molar enthalpy of formation of this borate was determined to be ?7888.6 ± 8.1 kJ mol?1 by using a heat conduction microcalorimeter.  相似文献   

4.
A novel hydrated cobalt tetraborate complex NH4[Co(NH3)5(H2O)][B4O5(OH)4]2·6H2O, was synthesized by the reaction of NH4‐borate aqueous with CoCl2 and its structure was determined by single crystal X‐ray diffraction. The crystal system of this complex is orthorhombic, the space group is Pnma, and the unit cell parameters are a=1.2901(2) nm, b=1.6817(3) nm, c=1.1368(2) nm, α=β=γ=90°, V=2.4742(8) nm3, and Z=4. This compound contains infinite borate layers constructed from [B4O5(OH)4]2? units via hydrogen bonds. The adjacent polyborate anion layers are further linked together with the octahedral [Co(NH3)5(H2O)]3+ groups through hydrogen bonds to form 3D framework. The groups and guest water molecules are deposited in the empty space of this framework and interact with the layers by extensive hydrogen bonds. Infrared and Raman spectra (4000–400 cm?1) of NH4[Co(NH3)5(H2O)][B4O5(OH)4]2·6H2O were recorded at room temperature and analyzed. Fundamental vibrational modes were identified and band assignments were made. The middle band observed at 575 cm?1 in Raman spectrum is the pulse vibration of [B4O5(OH)4]2?.  相似文献   

5.
盐卤硼酸盐化学──ⅩⅩⅧ.氯柱硼镁石的激光拉曼光谱   总被引:1,自引:0,他引:1  
本文研究了氯柱硼镁石硼酸和硼砂的晶体和它们在水溶液中的激光拉曼光谱,并与某些阴酸盐的谱图进行对比.初步提出硼氧配阴离子的聚合形式,为进行氯柱硼镁石结构分析提供实验依据.  相似文献   

6.
The title compound, bis­(borato)­dodeca(tert‐butoxo)­octa­deca­lithium, [Li18(BO3)2(C4H9O)12], is formulated conveniently as [{(tBuOLi)3(Li3BO3)}2(tBuOLi)6]. A central 12‐membered ring and two outer six‐membered rings are formed by alternating Li+ cations and alkoxide O atoms. Sandwiched between the central ring and each of the outer rings is a planar array of three further Li+ cations surrounding a [BO3]3− anion. Thus, the mol­ecule consists of a cationic [Li18(OtBu)12]6+ cage encapsulating two borate anions. This compound is the first example of a structurally characterized polynuclear lithium borate, and a rare case of a lithium alkoxide cage with nuclearity greater than eight. All the alkoxide ligands are triply bridging, and the lithium ions have trigonal‐planar, trigonal‐pyramidal and fourfold coordination, all with major distortions from regular coordination geometry.  相似文献   

7.
Superelectrophilic monoanions [B12(BO)11] and [B12(OBO)11], generated from stable dianions [B12(BO)12]2− and [B12(OBO)12]2−, show great potential for binding with noble gases (Ngs). The binding energies, quantum theory of atoms in molecules (QTAIM), natural population analysis (NPA), energy decomposition analysis (EDA), and electron localization function (ELF) were carried out to understand the B−Ng bond in [B12(BO)11Ng] and [B12(OBO)11Ng]. The calculated results reveal that heavier noble gases (Ar, Kr, and Xe) bind covalently with both [B12(BO)11] and [B12(OBO)11] with large binding energies, making them potentially feasible to be synthesized. Only [B12(OBO)11] could form a covalent bond with helium or neon but the small binding energy of [B12(OBO)11He] may pose a challenge for its experimental detection.  相似文献   

8.
The hydrothermal reaction of Cu(CH3COO)2·H2O, H3BO3, ethylenediamine and H2O in a molar ratio of 3:20:9:222 at 140°C for 5 d yields the deep blue crystals of a new copper polyborate [Cu(en)2B(OH)3]· [B5O5(OH)7] (en?H2NCH2CH2NH2) in 70% yield. It crystallizes in monoclinic system, space group P21/c, with unit cell dimensions, a=1.2779(2) nm, b=1.0167(15) nm, c=1.5019(2) nm, β=90.30(2)°, Z=4. The crystal structure of this compound consists of [Cu(en)2B(OH)3]2+ cation and [B5O5(OH)7]2? anion, which are linked together through hydrogen bonding interactions and electrostatic forces, forming an interesting three‐dimensional framework. The [B5O5(OH)7]2? anion is constituted of [B4O5(OH)4]2? anion and discrete B(OH)3 group which attaches to the side of [B4O5(OH)4]2? through intramolecular hydrogen bonds. Fundamental vibrational modes of this compound were identified and band assignments were made. The middle bands observed at 882 and 575 cm?1 in Raman spectrum are the characteristic peak of B(OH)3 group and [B4O5(OH)4]2? anion, respectively. Additionally the thermal behavior of title compound was recorded and its decomposition mechanism was discussed.  相似文献   

9.
Abstract

The structural study of some hydrated thallium (I) borates shows the existence of macroionic chains which can be considered as condensed heterocycles. In Tl [B3O4(OH)2] 0.5H2O, the unit is the well known B3O3 ring; it is formed by two BO3 triangles (Δ) and one BO4 tetrahedron (T); these units are linked to form an infinite chain; its shorthand notation is 3:∞1 (2Δ + T). The structure of Tl4 [B7O10(OH)3 · OBO(OH)] H2O contains a unit constituted by three B3O3 rings linked together by boron atoms; each ring is formed by two BO4 tetrahedra and one BO3 triangle; the corresponding fully hydrated polyanion is [B7O9(OH)7]4-. The chain is made up of units linked by BO2(OH) triangles; the shorthand notation of this borate is: 7:∞1 [(3Δ + 4T) + Δ].

The structure of Tl8Ge5O14 is composed of isolated Ge5O14 units; they are formed by a crown of four GeO4 tetrahedra linked by shared oxygens; two other oxygens of two of these GeO4 tetrahedra belong also to a fifth GeO4 tetrahedron which is located at the center of the crown.  相似文献   

10.
The structure of aqueous lithium tetraborate solutions was investigated by species distribution calculation and synchrotron X-ray scattering. It shows that the dominant species in supersaturated solution at 298.15 K is B4O5(OH) 4 2? and the minor species are B3O3(OH) 5 2? , B3O3(OH) 4 ? and B(OH)3. The ‘intramolecular’ structural parameters of B4O5(OH) 4 2? , such as bond length and coordination number, were gives out using density function theory calculation. X-ray scattering study shows that the distance Li–O(H2O)I of [Li(H2O)4]+ is about 0.1983 nm with the coordination number(CN) 4 in tetrahedral configuration. The B–O(H2O) distance in hydrated anion B4O5(OH)4(OH2) 8 2? is 0.3662 nm with the CN 12. The Li+–B distance is about 0.3364 nm with a coordination number ~1.0. The temperature effect on solution structure was also discussed.  相似文献   

11.
Diborane(6) dianions with substituents that are bonded to boron via carbon are very reactive and therefore only a few examples are known. Diborane(6) derivatives are the simplest catenated boron compounds with an electron‐precise B–B σ‐bond that are of fundamental interest and of relevance for material applications. The homoleptic hexacyanodiborane(6) dianion [B2(CN)6]2− that is chemically very robust is reported. The dianion is air‐stable and resistant against boiling water and anhydrous hydrogen fluoride. Its salts are thermally highly stable, for example, decomposition of (H3O)2[B2(CN)6] starts at 200 °C. The [B2(CN)6]2− dianion is readily accessible starting from 1) B(CN)32− and an oxidant, 2) [BF(CN)3] and a reductant, or 3) by the reaction of B(CN)32− with [BHal(CN)3] (Hal=F, Br). The latter reaction was found to proceed via a triply negatively charged transition state according to an SN2 mechanism.  相似文献   

12.
The templated borate, [C9H14N] · [B5O6(OH)4], was synthesized under hydrothermal conditions. Single crystal X‐ray diffraction techonology reveals that it crystallizes in the triclinic system, space group P$\bar{1}$ (No. 2). The material was also characterized by element analysis, Fourier transform infrared spectroscopy (FTIR), powder X‐ray diffraction (PXRD), thermogravimetric and differential thermal analysis (TG‐DTA), and luminescence spectroscopy. The compound consisted of isolated pentaborate [B5O6(OH)4] and N‐butylpyridinium cations [C9H14N]+. The [B5O6(OH)4] anions are connected together by hydrogen bonds to form a three‐dimensional framework, in which [C9H14N]+ cations are located in. [C9H14N] · [B5O6(OH)4] exhibits tunable luminescence emission at 415–458 nm by means of heating treatment from 100 to 300 °C.  相似文献   

13.
No explosion , but per-B-hydroxylation occurs if the icosahedral boron hydrides [closo-B12H12]2− (see picture), [closo-CB11H12], or closo-1,12-(CH2OH)2-1,12-C2B10H10 are refluxed in 30 % hydrogen peroxide. Thus, the three isoelectronic species [closo-B12(OH)12]2−, [closo-1-H-1-CB11(OH)11], and closo-1,12-H2-1,12-C2B10(OH)10 were obtained. ○=BH, ○=BOH.  相似文献   

14.
Dirubidium calcium tetraborate octahydrate, Rb2Ca[B4O5(OH)4]2·8H2O, was prepared by reaction of Rb-borate aqueous solution with CaCl2 and it's structure has been determined by single-crystal X-ray diffraction data. It crystallizes in the orthorhombic system, space group P212121 with unit cell parameters, Z=4, The structure contains alternate layers of [B4O5(OH)4]2− polyanions separated by water molecules and Rb, Ca cations. The isolated [B4O5(OH)4]2− is constructed from two BO3(OH) tetrahedron groups and two BO2(OH) triangular groups joined at common oxygen atoms. The two BO3(OH) tetrahedron groups are further linked by means of an oxygen bridge across the ring. The Ca2+ ion displays seven coordination, while the two non-equivalent Rb+ ions display nine and seven coordination, respectively. Infrared and Raman (4000-400 cm−1) spectra of Rb2Ca[B4O5(OH)4]2·8H2O were recorded at room temperature and analyzed. Fundamental vibrational modes were identified and band assignments were made. The dehydration of this hydrated mixed borate occurs in one step and leads to an amorphous phase which undergoes a crystallization.  相似文献   

15.
Two new hydrated borates, Zn8[(BO3)3O2(OH)3] and Pb[B5O8(OH)]·1.5H2O, have been prepared by hydrothermal reactions at 170 °C. Single-crystal X-ray structural analyses showed that Zn8[(BO3)3O2(OH)3] crystallizes in a non-centrosymmetric space group R32 with a=8.006(2) Å, c=17.751(2) Å, Z=3 and Pb[B5O8(OH)]·1.5H2O in a triclinic space group P1¯ with a=6.656(2) Å, b=6.714(2) Å, c=10.701(2) Å, α=99.07(2)°, β=93.67(2)°, γ=118.87(1)°, Z=2. Zn8[(BO3)3O2(OH)3] represents a new structure type in which Zn-centered tetrahedra are connected via common vertices leading to helical ribbons 1[Zn8O15(OH)3]17− that pack side by side and are further condensed through sharing oxygen atoms to form a three-dimensional 3[Zn8O11(OH)3]9− framework. The boron atoms are incorporated into the channels in the framework to complete the final structure. Pb[B5O8(OH)]·1.5H2O is a layered compound containing double ring [B5O8(OH)]2− building units that share exocyclic oxygen atoms to form a two-dimensional layer. Symmetry-center-related layers are stacked along the c-axis and held together by interlayer Pb2+ ions and water molecules via electrostatic and hydrogen bonding interactions. The IR spectra further confirmed the existence of both triangular BO3 and OH groups in Zn8[(BO3)3O2(OH)3], and BO3, BO4, OH groups as well as guest water molecules in Pb[B5O8(OH)]·1.5H2O.  相似文献   

16.
Reaction of [Pt(DMSO)2Cl2] or [Pd(MeCN)2Cl2] with the electron-rich LH=N,N’-bis(4-dimethylaminophenyl)ethanimidamide yielded mononuclear [PtL2] ( 1 ) but dinuclear [Pd2L4] ( 2 ), a paddle-wheel complex. The neutral compounds were characterized through experiments (crystal structures, electrochemistry, UV-vis-NIR spectroscopy, magnetic resonance) and TD-DFT calculations as metal(II) species with noninnocent ligands L. The reversibly accessible cations [PtL2]+ and [Pd2L4]+ were also studied, the latter as [Pd2L4][B{3,5-(CF3)2C6H3}4] single crystals. Experimental and computational investigations were directed at the elucidation of the electronic structures, establishing the correct oxidation states within the alternatives [PtII(L)2] or [Pt.(L )2], [PtII(L0.5−)2]+ or [PtIII(L)2]+, [(PdII)2(μ-L)4] or [(Pd1.5)2(μ-L0.75−)4], and [(Pd2.5)2(μ-L)4]+ or [(PdII)2(μ-L0.75−)4]+. In each case, the first alternative was shown to be most appropriate. Remarkable results include the preference of platinum for mononuclear planar [PtL2] with an N-Pt-N bite angle of 62.8(2)° in contrast to [Pd2L4], and the dimetal (Pd24+→Pd25+) instead of ligand (L→L ) oxidation of the dinuclear palladium compound.  相似文献   

17.
The new hydroxyl barium borate BaB8O11(OH)4 was synthesized by using a low‐temperature molten salt technique with boric acid as flux at 458 K. Its crystal structure was determined from single‐crystal X‐ray data. The compound crystallizes in the monoclinic space group P121/n1 (No.14) with unit cell of a = 790.80(16) pm, b = 1393.9(3) pm, c = 1004.7(2) pm, β = 90.00(3)°, V = 1107.6(4) × 106 pm3, Z = 2. It is isostructural to PbB8O11(OH)4, but obviously different from AB8O11(OH)4 (A = Ca, Sr) in cell. The crystal structure of BaB8O11(OH)4 is built from corrugated borate layers,{[B8O11(OH)4]2–}n parallel to (010), which are stacked along the b axis and are linked by barium atoms. The borate layer consists of [B6O9(OH)] clusters as fundamental building blocks (FBBs), which are connected with surrounding four FBBs by sharing common oxygen vertices to form a sheet, and the sheet is further decorated with the flanking [B2O2(OH)3] dimers. FT‐IR and Raman spectroscopy, DTA‐TG, and the identification of an intermediate phase are presented.  相似文献   

18.
Pr(BO2)3 and PrCl(BO2)2: Two Praseodymium meta‐Borates in Comparison Single‐crystalline PrCl(BO2)2 can be obtained by the reaction of praseodymium, Pr6O11 and PrCl3 with a small excess of B2O3 in evacuated silica tubes after seven days at 850 °C. If NaCl is additionally used as flux, single crystals of Pr(BO2)3 dominate the main product. Both praseodymium(III) meta‐borates are air and water stable. The crystals of PrCl(BO2)2 emerge as long, thin, pale green needles which tend to severe twinning due to their fibrous habit. The crystal structure (triclinic, P1¯; a = 420.56(4), b = 655.42(7), c = 808.34(8) pm, α = 82.361(8), β = 89.173(9), γ = 71.980(7)°, Z = 2) exhibits zigzag chains {[(B1)ot1/1Oe2/2(B2)Ot1/1Oe2/2]2−} (≡ {[BO2]}) of corner‐linked [BO3]3− triangles with syndiotactic orientation of the terminal oxygen atoms which are running parallel to the [100] direction. The Pr3+ cations are surrounded by three Cl and seven O2− anions with the shape of a tetracapped trigonal prism. The green, transparent crystals of Pr(BO2)3 (monoclinic, C2/c; a= 984.98(9), b = 809.57(8), c = 641.02(6) pm, β = 126.783(9)°, Z = 4) appear either lath‐shaped or rather spherical. In the crystal structure the B3+ cations reside both in trigonal planar as well as in tetrahedral coordination of oxygen atoms. Both types of borate polyhedra ([BO3]3− and [BO4]5−) are linked via corners to form chains of the composition {[(B2)‐Ot1/1Oe2/2(B1)Oe4/2(B2)Ot1/1Oe2/2]3−} (≡ {[BO2]}) which run parallel [101]. The coordination sphere of the Pr3+ cations consists of ten oxide anions which build up a bicapped square antiprism.  相似文献   

19.
K4[BS4O15(OH)], Ba[B2S3O13], and Gd2[B2S6O24] were obtained by a new synthetic approach. The strategy involves initially synthesizing the complex acid H[B(HSO4)4] which is subsequently reacted in an open system with anhydrous chlorides of K, Ba, and Gd to the respective borosulfates and a volatile molecule (HCl). Furthermore, protonated borosulfates should be accessible by appropriate stoichiometry of the starting materials, particularly in closed systems, which inhibit deprotonation of H[B(HSO4)4] via condensation and dehydration. This approach led to the successful synthesis of the first divalent and trivalent metal borosulfates (Ba[B2S3O13] with band‐silicate topology and Gd2[B2S6O24] with cyclosilicate topology) and the first hydrogen borosulfate K4[BS4O15(OH)].  相似文献   

20.
Raman and i.r. spectra of solid Na2[B2(O2)2(OH)4]·6H2O (normal, 10B, 11B, and 2H-substituted), Na2[B2(O2)2(OH)4nH2O (n=4, 0), Li2[B2(O2)2(OH)4] and MI2[B2(O2)2(OOH)2(OH)2] (MI= K, Rb, Cs) are reported and the vibrational modes assigned.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号