共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Cyrille Boyer Martina H. Stenzel Thomas P. Davis 《Journal of polymer science. Part A, Polymer chemistry》2011,49(3):551-595
Reversible addition fragmentation chain transfer (RAFT) polymerization is one of the most extensively studied controlled/living radical polymerization methods that has been used to prepare well‐defined nanostructured polymeric materials. This review, with more 650 references illustrates the range of well‐defined functional nanomaterials that can be accessed using RAFT chemistry. The detailed syntheses of macromolecules with predetermined molecular weights, designed molecular weight distributions, controlled topology, composition and functionality are presented. RAFT polymerization has been exploited to prepare complex molecular architectures, such as stars, blocks and gradient copolymers. The self‐assembly of RAFT‐polymer architectures has yielded complex nanomaterials or in combination with other nanostructures has generated hybrid multifunctional nanomaterials, such as polymer‐functionalized nanotubes, graphenes, and inorganic nanoparticles. Finally nanostructured surfaces have been described using the self‐organization of polymer films or by the utilization of polymer brushes. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011 相似文献
4.
以多功能水溶性聚合物配体制备的纳米颗粒具有小尺寸、单分散、生物相容性良好的特点,同时还具备近红外荧光、超顺磁性等特殊物理性质,弥补了传统方法制备纳米颗粒的缺陷。本文综述了近年来多功能水溶性聚合物配体制备贵金属纳米颗粒、磁性纳米颗粒、纳米量子点以及复合结构纳米颗粒的进展;阐述了多功能水溶性聚合物配体在制备纳米颗粒方面的优势;分析了多功能水溶性聚合物的结构、分子量、浓度等因素对制备纳米颗粒的影响。最后,探讨了小尺寸、单分散、水溶性的纳米颗粒在配体交换、药物靶向传输体系、疾病检测、生物标签、核磁共振成像以及光电学等领域的应用,并展望了多功能水溶性聚合物配体制备纳米颗粒的研究方向。 相似文献
5.
Dr. Mathis Baalmann Laura Neises Sebastian Bitsch Hendrik Schneider Lukas Deweid Philipp Werther Nadja Ilkenhans Martin Wolfring Michael J. Ziegler Jonas Wilhelm Prof. Dr. Harald Kolmar Dr. Richard Wombacher 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(31):12985-12993
Bioorthogonal chemistry holds great potential to generate difficult-to-access protein–protein conjugate architectures. Current applications are hampered by challenging protein expression systems, slow conjugation chemistry, use of undesirable catalysts, or often do not result in quantitative product formation. Here we present a highly efficient technology for protein functionalization with commonly used bioorthogonal motifs for Diels–Alder cycloaddition with inverse electron demand (DAinv). With the aim of precisely generating branched protein chimeras, we systematically assessed the reactivity, stability and side product formation of various bioorthogonal chemistries directly at the protein level. We demonstrate the efficiency and versatility of our conjugation platform using different functional proteins and the therapeutic antibody trastuzumab. This technology enables fast and routine access to tailored and hitherto inaccessible protein chimeras useful for a variety of scientific disciplines. We expect our work to substantially enhance antibody applications such as immunodetection and protein toxin-based targeted cancer therapies. 相似文献
6.
Abraham J. Domb Galina Linden Itzhack Polacheck Simon Benita 《Journal of polymer science. Part A, Polymer chemistry》1996,34(7):1229-1236
The coupling of nystatin (Nys), a water-insoluble antifungal agent, to dextran via an imine or amine bond was systematically investigated. Dextran was first oxidized to dialdehyde dextran using potassium periodate, purified from the oxidizing agent, and reacted with Nys to form the Schiff base. The Schiff base was reduced to the amine using borohydride. All reactions took place in water. The purification of the oxidized dextran from the oxidizing agent was essential to prevent oxidative degradation of Nys at the coupling step. The effects on the coupling yield of the following factors: dextran molecular weight, degree of oxidation (aldehyde content), Nys to dextran ratio, temperature, and reaction pH were studied. A 95% coupling yield was obtained at the optimized coupling conditions: pH 8.9 ± 0.1, 50% degree of oxidation, and initial ratio of Nys to dialdehyde dextran 1:2.5. In all experiments, dextran was decreased in molecular weight during the oxidation step. Both imine and amine forms of Nys-dextran conjugates were soluble in water and exhibited improved stability in aqueous solutions as compared to the unbound drug. The conjugates showed comparable minimum inhibitory concentration (MIC) values against Candida albicans and Cryptococcus neoformans. The conjugates were about 25 times less toxic than free Nys after a single injection in mice. © 1996 John Wiley & Sons, Inc. 相似文献
7.
8.
9.
Changjiang Li Zhaozhou Li Kunpeng Tan Prof. Dr. Guodu Liu 《European journal of organic chemistry》2023,26(33):e202300398
Rhodium-catalyzed hydroformylation of olefins is an important method for synthesizing aldehydes, and it is worth noting that regioselectivity and enantioselectivity of the product controlled by ligand are the most commonly used strategies. The modular synthesis of phosphite and phosphoramidite ligands have significant advantages of simple synthesis and high catalytic activity, which was why these ligands have been widely used in hydroformylation reactions. Herein, we focus on the synthesis methods and design ideas of such ligands, as well as their application effects in hydroformylation reactions. This review aims to provide a reference for the design and synthesis of ligands in hydroformylation subsequently. 相似文献
10.
Dr. Alan E. Enciso Dr. Francesca Lorandi Arshad Mehmood Dr. Marco Fantin Dr. Grzegorz Szczepaniak Prof. Dr. Benjamin G. Janesko Prof. Dr. Krzysztof Matyjaszewski 《Angewandte Chemie (Weinheim an der Bergstrasse, Germany)》2020,132(35):15020-15030
A facile and efficient two-step synthesis of p-substituted tris(2-pyridylmethyl)amine (TPMA) ligands to form Cu complexes with the highest activity to date in atom transfer radical polymerization (ATRP) is presented. In the divergent synthesis, p-Cl substituents in tris(4-chloro-2-pyridylmethyl)amine (TPMA3Cl) were replaced in one step and high yield by electron-donating cyclic amines (pyrrolidine (TPMAPYR), piperidine (TPMAPIP), and morpholine (TPMAMOR)) by nucleophilic aromatic substitution. The [CuII(TPMANR2)Br]+ complexes exhibited larger energy gaps between frontier molecular orbitals and >0.2 V more negative reduction potentials than [CuII(TPMA)Br]+, indicating >3 orders of magnitude higher ATRP activity. [CuI(TPMAPYR)]+ exhibited the highest reported activity for Br-capped acrylate chain ends in DMF, and moderate activity toward C−F bonds at room temperature. ATRP of n-butyl acrylate using only 10–25 part per million loadings of [CuII(TPMANR2)Br]+ exhibited excellent control. 相似文献
11.
Chui Wan Tse Lillian Sze Man Lam Ka Yan Kitty Man Wing Tak Wong Wai Kin Chan 《Journal of polymer science. Part A, Polymer chemistry》2005,43(6):1292-1308
We report the polymerization of rhenium‐containing methacrylates by atom transfer radical polymerization. The structure of the monomer was confirmed by X‐ray crystallography, which showed the bulkiness of the metal‐complex moiety. The rhenium complexes were polymerized in the presence of copper(I) bromide, 1,1,4,7,7‐pentamethyldiethylenetriamine, and methyl 2‐bromopropionate. They were copolymerized with methyl methacrylate in different monomer ratios. An ABA triblock copolymer was also synthesized with poly(methyl methacrylate) as the macroinitiator. When 2,2′‐bipyridine was used as the ligand for the copper catalyst in the polymerizations, it underwent a ligand exchange process with the iminopyridine ligand in the monomer. The neutral rhenium complex in the homopolymers and copolymers could be converted into ionic forms by the replacement of the chloride with an imidazole ligand, and the solubility of the resulting ionic polymers was greatly enhanced. The photosensitizing properties of the doped and undoped polymer films were investigated by the measurement of the photocurrent response under an externally applied electric field. The photoconductivities of the polymers were approximately 10?12–10?13 Ω?1 cm?1. The experimental quantum efficiencies were simulated with Onsager's theory, and they showed that the initial quantum yield and thermalization distance were 10?3 and 1.7 nm, respectively. Transmission electron microscopy showed that the rhenium complexes aggregated to form domains with dimensions of approximately 20–30 nm. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1292–1308, 2005 相似文献
12.
Dr. Mari Takahara Prof. Dr. Noriho Kamiya 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(21):4645-4655
Biosynthesis of natural lipidated proteins is linked to important signal pathways, and therefore analyzing protein lipidation is crucial for understanding cellular functions. Artificial lipidation of proteins has attracted attention in recent decades as it allows modulation of the amphiphilic nature of the protein of interest, and is used in the design of drug-delivery systems containing antibodies anchored on a lipid bilayer carrier. However, the intrinsic hydrophobicity of lipids makes the synthesis of lipid–protein conjugates challenging with respect to the yield and selectivity of the lipidation. In this Minireview, the development of chemical and enzymatic synthetic strategies for the preparation of a range of lipid–protein conjugates that do not compromise the functions of the proteins are discussed as well as applications of the conjugates. 相似文献
13.
Three coordination compounds [Mn3(dmb)6(H2O)4(4, 4′‐bpy)3(EtOH)]n ( 1 ) and [M(dmb)2(pyz)2 (H2O)2] [MII = Co ( 2 ), Mn ( 3 )] (Hdmb = 2, 6‐dimethoxybenzoic acid, 4, 4′‐bpy = 4, 4′‐bipyridine, pyz = pyrazine) were synthesized and characterized by single‐crystal X‐ray diffraction analysis. Compound 1 consists of infinite 1D polymeric chains, in which the metal entities are bridged by 4, 4′‐bpy ligands. There are four crystallographically independent MnII atoms in the linear chain with different coordination modes, which is only scarcely reported for linear polymers. The isostructural crystals of 2 and 3 are composed of neutral mononuclear complexes. In crystal the complexes are combined into chains by intermolecular O–H ··· N hydrogen bonds and π–π interactions between antiparallel pyrazine molecules. 相似文献
14.
Hubert Wadepohl 《Angewandte Chemie (International ed. in English)》1992,31(3):247-262
Transition-metal complexes in which two or more metal atoms are bridged by one or more arene ligands led a shadowy existence in comparison to the extensive class of mononuclear arene complexes. Arene bridges can occur in a variety of coordination modes and with almost all of the transition–metal elements of the periodic table. Nowhere else are found so many forms of distorted and bent arene rings. The binuclear compounds can be divided into two classes: adducts which show relatively weak metal–arene bonding and complexes which show strong arene–metal interaction. Most of the adducts are in equilibrium with mononuclear complexes in solution or are only stable in the solid state (often as polymers). In both classes syn and anti coordination occurs; their geometries show a wide variation between the extreme cases of η1 : η1-bridge and η6 : η6-triple-decker structure. Metal surfaces with chemisorbed arenes can be seen as a form of multinuclear arene–metal complexes. On transition-metal surfaces, benzene can be bonded to one, two, or four surface atoms. Molecular clusters with face-capping arene ligands that are bonded to three metal atoms have until now mainly been limited to two classes. The arenes bound to {(CO)3M}3 (M = Ru, Os) or (CpCo)3 clusters as μ3-η2 : η2 : η2 ligands show only a weak trigonal distortion towards a Kekulé structure. Detailed investigations of the molecular structure and ligand dynamics of [(CpCo)3(μ3-arene)] complexes considerably help the understanding of the bonding of arenes to metal clusters and to metal surfaces. 相似文献
15.
Baris Kumru Paolo Giusto Markus Antonietti 《Journal of polymer science. Part A, Polymer chemistry》2022,60(12):1827-1834
Benign polymerization routes offer new perspectives in current polymer technology. Especially for automated or continuous flow synthesis of polymers, new devices and principles have to be considered by the means of minimizing addition or separation sequences as well as the type of a polymer initiation. Near-UV and visible light-induced polymerization utilizing metal-free semiconductor polymeric carbon nitride (pCN) as heterogeneous photocatalyst was a first step into this direction. Moving from heterogeneous powder catalysis (which still requests catalyst separation) to surface photocatalysis via coating glass tubes or vials with pCN thin films is presented. Performance and effectivity of those photoactive reactors are proven by free radical photopolymerization of variety of monomers. Reusability of vials is demonstrated via reversible addition-fragmentation chain-transfer polymerization-assisted block copolymer synthesis. This strategy eliminates the necessity of adding or removing initiators, works at room temperature, and offers a platform for cheap and effective polymer synthesis at the age of automated synthesis. 相似文献
16.
John D. Lamb Mark D. Christenson 《Journal of inclusion phenomena and macrocyclic chemistry》1998,32(2-3):107-119
The selectivity of macrocyclic ligands such as crown ethers and cryptands in binding metal and other cations in aqueous and nonaqueous solvents can be exploited to make ion separations. Cations are usually separated by direct interaction with the ligand. In addition, anions associated with the positively charged macrocyclic complexes can be separated in novel separations systems. We have incorporated macrocyclic ligands into high performance ion chromatography, liquid membranes, and solvent extraction separation systems involving coalescence extraction. 相似文献
17.
由于许多药物通过和生物体内的大分子(如蛋白质和核酸) 的选择性结合发挥效用, 因此快速、有效地发现靶分子的高亲和性配体成为各种药物发现方法的首要目标。在现代生物技术和NMR 技术高度发展的基础上产生的一种发现生物大分子高亲和性配体的新方法--SAR-by-NMR, 由于采用NMR 技术可以综合多种药物设计方法的优势, 能够在短时间内得到先导化合物, 从而大大加快了药物发现的速度并能节省大量的费用。本文介绍了SAR-by-NMR 发现高亲和性配体的基本原理、特点及其在药物发现中的应用。 相似文献
18.
Junge Zhi Yan Guan Jiaxi Cui Anhua Liu Zhiguo Zhu Xinhua Wan Qifeng Zhou 《Journal of polymer science. Part A, Polymer chemistry》2009,47(9):2408-2421
A facile synthetic route to prepare the dual‐functional molecule, 2,5‐bis(4′‐carboxyphenyl)styrene, was developed. The esterification of this compound with chiral alcohols, that is, (S)‐(+)‐sec‐butanol/(R)‐(?)‐sec‐butanol, (S)‐(+)‐sec‐octanol/(R)‐(?)‐sec‐octanol, and D ‐(+)‐menthol/L ‐(?)‐menthol, respectively, yielded three enantiomeric pairs of novel vinyl monomers, which underwent radical polymerization to obtain helical polymers with an excess screw sense. These polymers exhibited optical rotations as large as fourfold those of the corresponding monomers. Their helical conformations were quite stable as revealed by the almost unchanged chiroptical properties measured at different temperatures. The polymers with linear alkyl tails in the side‐groups formed irreversibly columnar nematic phases in melt although the corresponding monomers were not liquid crystalline. Whereas, the polymers with cyclic tails generated no mesophase. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 2408–2421, 2009 相似文献
19.
Masami Kamigaito Kotaro Satoh 《Journal of polymer science. Part A, Polymer chemistry》2006,44(21):6147-6158
The simultaneous control of the molecular weights and the tacticity was attained even during radical polymerization by the judicious combinations of the living/controlled radical polymerizations based on the fast interconversion between the dormant and active species, and the stereospecific radical polymerizations mediated by the added Lewis acids or polar solvents via the coordination to the monomer/polymer terminal substituents. This can be useful for various monomers including not only conjugated monomers, such as acrylamides and methacrylates, but also nonconjugated ones such as vinyl acetate and N‐vinylpyrrolidone. Stereoblock polymers were easily obtained by the addition of the Lewis acids or by change of the solvents during the living radical polymerizations. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6147–6158, 2006 相似文献
20.
The branched, chiral products 1 are formed preferentially in the allylic alkylations in Equation (1) when the Pd catalyst contains the P,N ligand L* or derivatives thereof. The ligands are readily synthesized from commercially available precursors. 相似文献